
8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 1/24

Navigation

� 	Project
description

ś 	Release
history

Ñ 	Download
files

Project	links

ŝ Homepage

� Download

Statistics

Project	description

“It’s	just	XML,	what	could	probably	go	wrong?”

Christian	Heimes	<christian@python.org >

Synopsis

The	results	of	an	attack	on	a	vulnerable	XML	library	can	be	fairly
dramatic.	With	just	a	few	hundred	Bytes	of	XML	data	an	attacker
can	occupy	several	Gigabytes	of	memory	within	seconds.	An
attacker	can	also	keep	CPUs	busy	for	a	long	time	with	a	small	to
medium	size	request.	Under	some	circumstances	it	is	even	possible
to	access	local	files	on	your	server,	to	circumvent	a	firewall,	or	to
abuse	services	to	rebound	attacks	to	third	parties.

The	attacks	use	and	abuse	less	common	features	of	XML	and	its
parsers.	The	majority	of	developers	are	unacquainted	with	features

Help 	 Donate 	 Log	in 	 Register

pip	install	defusedxml==0.5.0

defusedxml	0.5.0 â
Newer	version
available	(0.6.0)

Last	released:	Feb	9,
2017

XML	bomb	protection	for	Python	stdlib	modules

Search	projects ȡ

®

*

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 2/24

GitHub	statistics:

ɕ 	Stars:	126	

� 	Forks:	25	

á 	Open
issues/PRs:	8	

View	statistics	for	this
project	via
Libraries.io ,	or	by
using	Google
BigQuery

Meta

License:	Python
So�ware	Foundation
License	(PSFL)

Author:	Christian
Heimes

ɶ	xml,	bomb,	DoS

Maintainers

tiran

Classifiers

Development	Status
5	-
Production/Stable

Intended	Audience
Developers

License
OSI	Approved	::
Python	So�ware

such	as	processing	instructions	and	entity	expansions	that	XML
inherited	from	SGML.	At	best	they	know	about	 <!DOCTYPE> 	from
experience	with	HTML	but	they	are	not	aware	that	a	document	type
definition	(DTD)	can	generate	an	HTTP	request	or	load	a	file	from
the	file	system.

None	of	the	issues	is	new.	They	have	been	known	for	a	long	time.
Billion	laughs	was	first	reported	in	2003.	Nevertheless	some	XML
libraries	and	applications	are	still	vulnerable	and	even	heavy	users
of	XML	are	surprised	by	these	features.	It’s	hard	to	say	whom	to
blame	for	the	situation.	It’s	too	short	sighted	to	shi�	all	blame	on
XML	parsers	and	XML	libraries	for	using	insecure	default	settings.
A�er	all	they	properly	implement	XML	specifications.	Application
developers	must	not	rely	that	a	library	is	always	configured	for
security	and	potential	harmful	data	by	default.

Table	of	Contents

Synopsis

Attack	vectors

billion	laughs	/	exponential	entity	expansion

quadratic	blowup	entity	expansion

external	entity	expansion	(remote)

external	entity	expansion	(local	file)

DTD	retrieval

Python	XML	Libraries

Settings	in	standard	library

defusedxml

defusedxml	(package)

defusedxml.cElementTree

defusedxml.ElementTree

defusedxml.expatreader

defusedxml.sax

defusedxml.expatbuilder

defusedxml.minidom

defusedxml.pulldom

defusedxml.xmlrpc

æ

æ

æ

æ

æ

*

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 3/24

Foundation	License

Natural	Language
English

Programming
Language
Python
Python	::	2
Python	::	2.7
Python	::	3
Python	::	3.4
Python	::	3.5
Python	::	3.6

Topic
Text	Processing	::
Markup	::	XML

defusedxml.lxml

defusedexpat

Modifications	in	expat

How	to	avoid	XML	vulnerabilities

Other	things	to	consider

attribute	blowup	/	hash	collision	attack

decompression	bomb

Processing	Instruction

Other	DTD	features

XPath

XPath	injection	attacks

XInclude

XMLSchema	location

XSL	Transformation

Related	CVEs

Other	languages	/	frameworks

Perl

Ruby

PHP

C#	/	.NET	/	Mono

Java

TODO

License

Acknowledgements

References

Changelog

defusedxml	0.5.0

defusedxml	0.5.0.rc1

defusedxml	0.4.1

defusedxml	0.4

defusedxml	0.3

defusedxml	0.2

defusedxml	0.1

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 4/24

Attack	vectors

billion	laughs	/	exponential	entity	expansion

The	Billion	Laughs	attack	–	also	known	as	exponential	entity
expansion	–	uses	multiple	levels	of	nested	entities.	The	original
example	uses	9	levels	of	10	expansions	in	each	level	to	expand	the
string	 lol 	to	a	string	of	3	*	10	 	bytes,	hence	the	name	“billion
laughs”.	The	resulting	string	occupies	3	GB	(2.79	GiB)	of	memory;
intermediate	strings	require	additional	memory.	Because	most
parsers	don’t	cache	the	intermediate	step	for	every	expansion	it	is
repeated	over	and	over	again.	It	increases	the	CPU	load	even	more.

An	XML	document	of	just	a	few	hundred	bytes	can	disrupt	all
services	on	a	machine	within	seconds.

Example	XML:

<!DOCTYPE	xmlbomb	[
<!ENTITY	a	"1234567890"	>	
<!ENTITY	b	"&a;&a;&a;&a;&a;&a;&a;&a;">	
<!ENTITY	c	"&b;&b;&b;&b;&b;&b;&b;&b;">	
<!ENTITY	d	"&c;&c;&c;&c;&c;&c;&c;&c;">	
]>	
<bomb>&d;</bomb>	

quadratic	blowup	entity	expansion

A	quadratic	blowup	attack	is	similar	to	a	Billion	Laughs	attack;	it
abuses	entity	expansion,	too.	Instead	of	nested	entities	it	repeats
one	large	entity	with	a	couple	of	thousand	chars	over	and	over
again.	The	attack	isn’t	as	e�icient	as	the	exponential	case	but	it
avoids	triggering	countermeasures	of	parsers	against	heavily
nested	entities.	Some	parsers	limit	the	depth	and	breadth	of	a
single	entity	but	not	the	total	amount	of	expanded	text	throughout
an	entire	XML	document.

9

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 5/24

A	medium-sized	XML	document	with	a	couple	of	hundred	kilobytes
can	require	a	couple	of	hundred	MB	to	several	GB	of	memory.	When
the	attack	is	combined	with	some	level	of	nested	expansion	an
attacker	is	able	to	achieve	a	higher	ratio	of	success.

external	entity	expansion	(remote)

Entity	declarations	can	contain	more	than	just	text	for	replacement.
They	can	also	point	to	external	resources	by	public	identifiers	or
system	identifiers.	System	identifiers	are	standard	URIs.	When	the
URI	is	a	URL	(e.g.	a	 http:// 	locator)	some	parsers	download	the
resource	from	the	remote	location	and	embed	them	into	the	XML
document	verbatim.

Simple	example	of	a	parsed	external	entity:

The	case	of	parsed	external	entities	works	only	for	valid	XML
content.	The	XML	standard	also	supports	unparsed	external	entities
with	a	 NData	declaration .

External	entity	expansion	opens	the	door	to	plenty	of	exploits.	An
attacker	can	abuse	a	vulnerable	XML	library	and	application	to
rebound	and	forward	network	requests	with	the	IP	address	of	the
server.	It	highly	depends	on	the	parser	and	the	application	what
kind	of	exploit	is	possible.	For	example:

An	attacker	can	circumvent	firewalls	and	gain	access	to
restricted	resources	as	all	the	requests	are	made	from	an

<!DOCTYPE	bomb	[
<!ENTITY	a	"xxxxxxx...	a	couple	of	ten	thousand	chars
]>	
<bomb>&a;&a;&a;...	repeat</bomb>	

<!DOCTYPE	external	[
<!ENTITY	ee	SYSTEM	"http://www.python.org/some.xml">	
]>	
<root>ⅇ</root>	

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 6/24

internal	and	trustworthy	IP	address,	not	from	the	outside.

An	attacker	can	abuse	a	service	to	attack,	spy	on	or	DoS	your
servers	but	also	third	party	services.	The	attack	is	disguised
with	the	IP	address	of	the	server	and	the	attacker	is	able	to
utilize	the	high	bandwidth	of	a	big	machine.

An	attacker	can	exhaust	additional	resources	on	the	machine,
e.g.	with	requests	to	a	service	that	doesn’t	respond	or	responds
with	very	large	files.

An	attacker	may	gain	knowledge,	when,	how	o�en	and	from
which	IP	address	a	XML	document	is	accessed.

An	attacker	could	send	mail	from	inside	your	network	if	the
URL	handler	supports	 smtp:// 	URIs.

external	entity	expansion	(local	file)

External	entities	with	references	to	local	files	are	a	sub-case	of
external	entity	expansion.	It’s	listed	as	an	extra	attack	because	it
deserves	extra	attention.	Some	XML	libraries	such	as	lxml	disable
network	access	by	default	but	still	allow	entity	expansion	with	local
file	access	by	default.	Local	files	are	either	referenced	with	a
file:// 	URL	or	by	a	file	path	(either	relative	or	absolute).

An	attacker	may	be	able	to	access	and	download	all	files	that	can
be	read	by	the	application	process.	This	may	include	critical
configuration	files,	too.

<!DOCTYPE	external	[
<!ENTITY	ee	SYSTEM	"file:///PATH/TO/simple.xml">	
]>	
<root>ⅇ</root>	

DTD	retrieval

This	case	is	similar	to	external	entity	expansion,	too.	Some	XML
libraries	like	Python’s	xml.dom.pulldom	retrieve	document	type
definitions	from	remote	or	local	locations.	Several	attack	scenarios
from	the	external	entity	case	apply	to	this	issue	as	well.

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 7/24

Python	XML	Libraries

vulnerabilities	and	features

kind sax etree minidom pulldom xmlrpc lxml genshi

billion
laughs

True True True True True
False
(1)

False
(5)

quadratic
blowup

True True True True True True
False
(5)

external
entity
expansion
(remote)

True
False
(3)

False	(4) True false
False
(1)

False
(5)

external
entity
expansion
(local	file)

True
False
(3)

False	(4) True false True
False
(5)

DTD
retrieval

True False False True false
False
(1)

False

gzip
bomb

False False False False True
partly
(2)

False

xpath
support
(7)

False False False False False True False

xsl(t)
support
(7)

False False False False False True False

<?xml	version="1.0"	encoding="utf-8"?>	
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitio
		"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitiona
<html>	
				<head/>	
				<body>text</body>	
</html>	

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 8/24

kind sax etree minidom pulldom xmlrpc lxml genshi

xinclude
support
(7)

False
True
(6)

False False False
True
(6)

True

C	library expat expat expat expat expat libxml2 expat

1.	Lxml	is	protected	against	billion	laughs	attacks	and	doesn’t	do
network	lookups	by	default.

2.	libxml2	and	lxml	are	not	directly	vulnerable	to	gzip
decompression	bombs	but	they	don’t	protect	you	against	them
either.

3.	xml.etree	doesn’t	expand	entities	and	raises	a	ParserError
when	an	entity	occurs.

4.	minidom	doesn’t	expand	entities	and	simply	returns	the
unexpanded	entity	verbatim.

5.	genshi.input	of	genshi	0.6	doesn’t	support	entity	expansion
and	raises	a	ParserError	when	an	entity	occurs.

6.	Library	has	(limited)	XInclude	support	but	requires	an
additional	step	to	process	inclusion.

7.	These	are	features	but	they	may	introduce	exploitable	holes,
see	Other	things	to	consider

Settings	in	standard	library

xml.sax.handler	Features

feature_external_ges	(http://xml.org/sax/features/external-
general-entities)

disables	external	entity	expansion

feature_external_pes	(http://xml.org/sax/features/external-
parameter-entities)

the	option	is	ignored	and	doesn’t	modify	any	functionality

DOM	xml.dom.xmlbuilder.Options

external_parameter_entities

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 9/24

ignored

external_general_entities
ignored

external_dtd_subset
ignored

entities
unsure

defusedxml

The	defusedxml	package	(defusedxml	on	PyPI)	contains	several
Python-only	workarounds	and	fixes	for	denial	of	service	and	other
vulnerabilities	in	Python’s	XML	libraries.	In	order	to	benefit	from	the
protection	you	just	have	to	import	and	use	the	listed	functions	/
classes	from	the	right	defusedxml	module	instead	of	the	original
module.	Merely	defusedxml.xmlrpc	is	implemented	as	monkey
patch.

Instead	of:

>>>	from	xml.etree.ElementTree	import	parse	
>>>	et	=	parse(xmlfile)	

alter	code	to:

>>>	from	defusedxml.ElementTree	import	parse	
>>>	et	=	parse(xmlfile)	

Additionally	the	package	has	an	untested	function	to	monkey
patch	all	stdlib	modules	with	 defusedxml.defuse_stdlib() .

All	functions	and	parser	classes	accept	three	additional	keyword
arguments.	They	return	either	the	same	objects	as	the	original
functions	or	compatible	subclasses.

forbid_dtd	(default:	False)

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 10/24

disallow	XML	with	a	 <!DOCTYPE> 	processing	instruction	and
raise	a	DTDForbidden	exception	when	a	DTD	processing
instruction	is	found.

forbid_entities	(default:	True)
disallow	XML	with	 <!ENTITY> 	declarations	inside	the	DTD	and
raise	an	EntitiesForbidden	exception	when	an	entity	is	declared.

forbid_external	(default:	True)
disallow	any	access	to	remote	or	local	resources	in	external
entities	or	DTD	and	raising	an	ExternalReferenceForbidden
exception	when	a	DTD	or	entity	references	an	external
resource.

defusedxml	(package)

DefusedXmlException,	DTDForbidden,	EntitiesForbidden,
ExternalReferenceForbidden,	NotSupportedError

defuse_stdlib()	(experimental)

defusedxml.cElementTree

parse(),	iterparse(),	fromstring(),	XMLParser

defusedxml.ElementTree

parse(),	iterparse(),	fromstring(),	XMLParser

defusedxml.expatreader

create_parser(),	DefusedExpatParser

defusedxml.sax

parse(),	parseString(),	create_parser()

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 11/24

defusedxml.expatbuilder

parse(),	parseString(),	DefusedExpatBuilder,
DefusedExpatBuilderNS

defusedxml.minidom

parse(),	parseString()

defusedxml.pulldom

parse(),	parseString()

defusedxml.xmlrpc

The	fix	is	implemented	as	monkey	patch	for	the	stdlib’s	xmlrpc
package	(3.x)	or	xmlrpclib	module	(2.x).	The	function
monkey_patch()	enables	the	fixes,	unmonkey_patch()	removes	the
patch	and	puts	the	code	in	its	former	state.

The	monkey	patch	protects	against	XML	related	attacks	as	well	as
decompression	bombs	and	excessively	large	requests	or	responses.
The	default	setting	is	30	MB	for	requests,	responses	and	gzip
decompression.	You	can	modify	the	default	by	changing	the
module	variable	MAX_DATA.	A	value	of	-1	disables	the	limit.

defusedxml.lxml

The	module	acts	as	an	example	how	you	could	protect	code	that
uses	lxml.etree.	It	implements	a	custom	Element	class	that	filters
out	Entity	instances,	a	custom	parser	factory	and	a	thread	local
storage	for	parser	instances.	It	also	has	a	check_docinfo()	function
which	inspects	a	tree	for	internal	or	external	DTDs	and	entity
declarations.	In	order	to	check	for	entities	lxml	>	3.0	is	required.

parse(),	fromstring()	RestrictedElement,	GlobalParserTLS,
getDefaultParser(),	check_docinfo()

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 12/24

defusedexpat

The	defusedexpat	package	(defusedexpat	on	PyPI)	comes	with
binary	extensions	and	a	modified	expat	libary	instead	of	the
standard	expat	parser.	It’s	basically	a	stand-alone	version	of	the
patches	for	Python’s	standard	library	C	extensions.

Modifications	in	expat

new	definitions:

XML_BOMB_PROTECTION	
XML_DEFAULT_MAX_ENTITY_INDIRECTIONS	
XML_DEFAULT_MAX_ENTITY_EXPANSIONS	
XML_DEFAULT_RESET_DTD	

new	XML_FeatureEnum	members:

XML_FEATURE_MAX_ENTITY_INDIRECTIONS	
XML_FEATURE_MAX_ENTITY_EXPANSIONS	
XML_FEATURE_IGNORE_DTD	

new	XML_Error	members:

XML_ERROR_ENTITY_INDIRECTIONS	
XML_ERROR_ENTITY_EXPANSION	

new	API	functions:

int	XML_GetFeature(XML_Parser	parser,	
																			enum	XML_FeatureEnum	feature,	
																			long	*value);	
int	XML_SetFeature(XML_Parser	parser,	
																			enum	XML_FeatureEnum	feature,	
																			long	value);	
int	XML_GetFeatureDefault(enum	XML_FeatureEnum	feature

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 13/24

XML_FEATURE_MAX_ENTITY_INDIRECTIONS

Limit	the	amount	of	indirections	that	are	allowed	to	occur
during	the	expansion	of	a	nested	entity.	A	counter	starts	when
an	entity	reference	is	encountered.	It	resets	a�er	the	entity	is
fully	expanded.	The	limit	protects	the	parser	against
exponential	entity	expansion	attacks	(aka	billion	laughs
attack).	When	the	limit	is	exceeded	the	parser	stops	and	fails
with	XML_ERROR_ENTITY_INDIRECTIONS.	A	value	of	0	disables
the	protection.

Supported	range
0	..	UINT_MAX

Default
40

XML_FEATURE_MAX_ENTITY_EXPANSIONS

Limit	the	total	length	of	all	entity	expansions	throughout	the
entire	document.	The	lengths	of	all	entities	are	accumulated	in
a	parser	variable.	The	setting	protects	against	quadratic
blowup	attacks	(lots	of	expansions	of	a	large	entity
declaration).	When	the	sum	of	all	entities	exceeds	the	limit,	the
parser	stops	and	fails	with	XML_ERROR_ENTITY_EXPANSION.	A
value	of	0	disables	the	protection.

Supported	range
0	..	UINT_MAX

Default
8	MiB

XML_FEATURE_RESET_DTD

Reset	all	DTD	information	a�er	the	<!DOCTYPE>	block	has	been
parsed.	When	the	flag	is	set	(default:	false)	all	DTD	information
a�er	the	endDoctypeDeclHandler	has	been	called.	The	flag	can
be	set	inside	the	endDoctypeDeclHandler.	Without	DTD

																										long	*value);	
int	XML_SetFeatureDefault(enum	XML_FeatureEnum	feature
																										long	value);	

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 14/24

information	any	entity	reference	in	the	document	body	leads	to
XML_ERROR_UNDEFINED_ENTITY.

Supported	range
0,	1

Default
0

How	to	avoid	XML	vulnerabilities

Best	practices

Don’t	allow	DTDs

Don’t	expand	entities

Don’t	resolve	externals

Limit	parse	depth

Limit	total	input	size

Limit	parse	time

Favor	a	SAX	or	iterparse-like	parser	for	potential	large	data

Validate	and	properly	quote	arguments	to	XSL	transformations
and	XPath	queries

Don’t	use	XPath	expression	from	untrusted	sources

Don’t	apply	XSL	transformations	that	come	untrusted	sources

(based	on	Brad	Hill’s	Attacking	XML	Security)

Other	things	to	consider

XML,	XML	parsers	and	processing	libraries	have	more	features	and
possible	issue	that	could	lead	to	DoS	vulnerabilities	or	security
exploits	in	applications.	I	have	compiled	an	incomplete	list	of
theoretical	issues	that	need	further	research	and	more	attention.
The	list	is	deliberately	pessimistic	and	a	bit	paranoid,	too.	It
contains	things	that	might	go	wrong	under	da�y	circumstances.

attribute	blowup	/	hash	collision	attack

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 15/24

XML	parsers	may	use	an	algorithm	with	quadratic	runtime	O(n)	to
handle	attributes	and	namespaces.	If	it	uses	hash	tables
(dictionaries)	to	store	attributes	and	namespaces	the
implementation	may	be	vulnerable	to	hash	collision	attacks,	thus
reducing	the	performance	to	O(n)	again.	In	either	case	an	attacker
is	able	to	forge	a	denial	of	service	attack	with	an	XML	document
that	contains	thousands	upon	thousands	of	attributes	in	a	single
node.

I	haven’t	researched	yet	if	expat,	pyexpat	or	libxml2	are	vulnerable.

decompression	bomb

The	issue	of	decompression	bombs	(aka	ZIP	bomb)	apply	to	all	XML
libraries	that	can	parse	compressed	XML	stream	like	gzipped	HTTP
streams	or	LZMA-ed	files.	For	an	attacker	it	can	reduce	the	amount
of	transmitted	data	by	three	magnitudes	or	more.	Gzip	is	able	to
compress	1	GiB	zeros	to	roughly	1	MB,	lzma	is	even	better:

None	of	Python’s	standard	XML	libraries	decompress	streams
except	for	 xmlrpclib .	The	module	is	vulnerable
<http://bugs.python.org/issue16043>	to	decompression	bombs.

lxml	can	load	and	process	compressed	data	through	libxml2
transparently.	libxml2	can	handle	even	very	large	blobs	of
compressed	data	e�iciently	without	using	too	much	memory.	But	it
doesn’t	protect	applications	from	decompression	bombs.	A
carefully	written	SAX	or	iterparse-like	approach	can	be	safe.

Processing	Instruction

PI’s	like:

$	dd	if=/dev/zero	bs=1M	count=1024	|	gzip	>	zeros.gz	
$	dd	if=/dev/zero	bs=1M	count=1024	|	lzma	-z	>	zeros.x
$	ls	-sh	zeros.*	
1020K	zeros.gz	
	148K	zeros.xy	

2

2

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 16/24

<?xml-stylesheet	type="text/xsl"	href="style.xsl"?>	

may	impose	more	threats	for	XML	processing.	It	depends	if	and	how
a	processor	handles	processing	instructions.	The	issue	of	URL
retrieval	with	network	or	local	file	access	apply	to	processing
instructions,	too.

Other	DTD	features

DTD	has	more	features	like	 <!NOTATION> .	I	haven’t	researched
how	these	features	may	be	a	security	threat.

XPath

XPath	statements	may	introduce	DoS	vulnerabilities.	Code	should
never	execute	queries	from	untrusted	sources.	An	attacker	may	also
be	able	to	create	a	XML	document	that	makes	certain	XPath	queries
costly	or	resource	hungry.

XPath	injection	attacks

XPath	injeciton	attacks	pretty	much	work	like	SQL	injection	attacks.
Arguments	to	XPath	queries	must	be	quoted	and	validated
properly,	especially	when	they	are	taken	from	the	user.	The	page
Avoid	the	dangers	of	XPath	injection	list	some	ramifications	of
XPath	injections.

Python’s	standard	library	doesn’t	have	XPath	support.	Lxml
supports	parameterized	XPath	queries	which	does	proper	quoting.
You	just	have	to	use	its	xpath()	method	correctly:

#	DON'T	
>>>	tree.xpath("/tag[@id='%s']"	%	value)	
	
#	instead	do	
>>>	tree.xpath("/tag[@id=$tagid]",	tagid=name)	

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 17/24

XInclude

XML	Inclusion	is	another	way	to	load	and	include	external	files:

<root	xmlns:xi="http://www.w3.org/2001/XInclude">	
		<xi:include	href="filename.txt"	parse="text"	/>	
</root>	

This	feature	should	be	disabled	when	XML	files	from	an	untrusted
source	are	processed.	Some	Python	XML	libraries	and	libxml2
support	XInclude	but	don’t	have	an	option	to	sandbox	inclusion
and	limit	it	to	allowed	directories.

XMLSchema	location

A	validating	XML	parser	may	download	schema	files	from	the
information	in	a	 xsi:schemaLocation 	attribute.

XSL	Transformation

You	should	keep	in	mind	that	XSLT	is	a	Turing	complete	language.
Never	process	XSLT	code	from	unknown	or	untrusted	source!	XSLT
processors	may	allow	you	to	interact	with	external	resources	in
ways	you	can’t	even	imagine.	Some	processors	even	support
extensions	that	allow	read/write	access	to	file	system,	access	to	JRE
objects	or	scripting	with	Jython.

Example	from	Attacking	XML	Security	for	Xalan-J:

<ead	xmlns="urn:isbn:1-931666-22-9"	
					xmlns:xsi="http://www.w3.org/2001/XMLSchema-inst
					xsi:schemaLocation="urn:isbn:1-931666-22-9	http:
</ead>	

<xsl:stylesheet	version="1.0"	
	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"	

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 18/24

Related	CVEs

CVE-2013-1664
Unrestricted	entity	expansion	induces	DoS	vulnerabilities	in
Python	XML	libraries	(XML	bomb)

CVE-2013-1665
External	entity	expansion	in	Python	XML	libraries	inflicts
potential	security	flaws	and	DoS	vulnerabilities

Other	languages	/	frameworks

Several	other	programming	languages	and	frameworks	are
vulnerable	as	well.	A	couple	of	them	are	a�ected	by	the	fact	that
libxml2	up	to	2.9.0	has	no	protection	against	quadratic	blowup
attacks.	Most	of	them	have	potential	dangerous	default	settings	for
entity	expansion	and	external	entities,	too.

Perl

Perl’s	XML::Simple	is	vulnerable	to	quadratic	entity	expansion	and
external	entity	expansion	(both	local	and	remote).

Ruby

Ruby’s	REXML	document	parser	is	vulnerable	to	entity	expansion
attacks	(both	quadratic	and	exponential)	but	it	doesn’t	do	external

	xmlns:rt="http://xml.apache.org/xalan/java/java.lang
	xmlns:ob="http://xml.apache.org/xalan/java/java.lang
	exclude-result-prefixes=	"rt	ob">	
	<xsl:template	match="/">	
			<xsl:variable	name="runtimeObject"	select="rt:getR
			<xsl:variable	name="command"	
					select="rt:exec($runtimeObject,	'c:\Windows
			<xsl:variable	name="commandAsString"	select="ob:toS
			<xsl:value-of	select="$commandAsString"/>	
	</xsl:template>	
</xsl:stylesheet>	

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 19/24

entity	expansion	by	default.	In	order	to	counteract	entity	expansion
you	have	to	disable	the	feature:

REXML::Document.entity_expansion_limit	=	0	

libxml-ruby	and	hpricot	don’t	expand	entities	in	their	default
configuration.

PHP

PHP’s	SimpleXML	API	is	vulnerable	to	quadratic	entity	expansion
and	loads	entites	from	local	and	remote	resources.	The	option
LIBXML_NONET 	disables	network	access	but	still	allows	local	file
access.	 LIBXML_NOENT 	seems	to	have	no	e�ect	on	entity	expansion
in	PHP	5.4.6.

C#	/	.NET	/	Mono

Information	in	XML	DoS	and	Defenses	(MSDN)	suggest	that	.NET	is
vulnerable	with	its	default	settings.	The	article	contains	code
snippets	how	to	create	a	secure	XML	reader:

Java

Untested.	The	documentation	of	Xerces	and	its	Xerces
SecurityMananger	sounds	like	Xerces	is	also	vulnerable	to	billion
laugh	attacks	with	its	default	settings.	It	also	does	entity	resolving
when	an	 org.xml.sax.EntityResolver 	is	configured.	I’m	not	yet
sure	about	the	default	setting	here.

XmlReaderSettings	settings	=	new	XmlReaderSettings();	
settings.ProhibitDtd	=	false;	
settings.MaxCharactersFromEntities	=	1024;	
settings.XmlResolver	=	null;	
XmlReader	reader	=	XmlReader.Create(stream,	settings)

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 20/24

Java	specialists	suggest	to	have	a	custom	builder	factory:

TODO

DOM:	Use	xml.dom.xmlbuilder	options	for	entity	handling

SAX:	take	feature_external_ges	and	feature_external_pes	(?)
into	account

test	experimental	monkey	patching	of	stdlib	modules

improve	documentation

License

Copyright	(c)	2013-2017	by	Christian	Heimes
<christian@python.org >

Licensed	to	PSF	under	a	Contributor	Agreement.

See	http://www.python.org/psf/license	for	licensing	details.

Acknowledgements

Brett	Cannon	(Python	Core	developer)
review	and	code	cleanup

Antoine	Pitrou	(Python	Core	developer)
code	review

DocumentBuilderFactory	builderFactory	=	DocumentBuilde
builderFactory.setXIncludeAware(False);	
builderFactory.setExpandEntityReferences(False);	
builderFactory.setFeature(XMLConstants.FEATURE_SECURE_
#	either	
builderFactory.setFeature("http://apache.org/xml/feat
#	or	if	you	need	DTDs	
builderFactory.setFeature("http://xml.org/sax/features
builderFactory.setFeature("http://xml.org/sax/features
builderFactory.setFeature("http://apache.org/xml/feat
builderFactory.setFeature("http://apache.org/xml/feat

*

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 21/24

Aaron	Patterson,	Ben	Murphy	and	Michael	Koziarski	(Ruby
community)

Many	thanks	to	Aaron,	Ben	and	Michael	from	the	Ruby
community	for	their	report	and	assistance.

Thierry	Carrez	(OpenStack)
Many	thanks	to	Thierry	for	his	report	to	the	Python	Security
Response	Team	on	behalf	of	the	OpenStack	security	team.

Carl	Meyer	(Django)
Many	thanks	to	Carl	for	his	report	to	PSRT	on	behalf	of	the
Django	security	team.

Daniel	Veillard	(libxml2)
Many	thanks	to	Daniel	for	his	insight	and	assistance	with
libxml2.

semantics	GmbH	(http://www.semantics.de/)
Many	thanks	to	my	employer	semantics	for	letting	me	work	on
the	issue	during	working	hours	as	part	of	semantics’s	open
source	initiative.

References

XML	DoS	and	Defenses	(MSDN)

Billion	Laughs	on	Wikipedia

ZIP	bomb	on	Wikipedia

Configure	SAX	parsers	for	secure	processing

Testing	for	XML	Injection

Changelog

defusedxml	0.5.0

Release	date:	07-Feb-2017

No	changes

defusedxml	0.5.0.rc1

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 22/24

Release	date:	28-Jan-2017

Add	compatibility	with	Python	3.6

Drop	support	for	Python	2.6,	3.1,	3.2,	3.3

Fix	lxml	tests	(XMLSyntaxError:	Detected	an	entity	reference
loop)

defusedxml	0.4.1

Release	date:	28-Mar-2013

Add	more	demo	exploits,	e.g.	python_external.py	and	Xalan
XSLT	demos.

Improved	documentation.

defusedxml	0.4

Release	date:	25-Feb-2013

As	per	http://seclists.org/oss-sec/2013/q1/340	please	REJECT
CVE-2013-0278,	CVE-2013-0279	and	CVE-2013-0280	and	use
CVE-2013-1664,	CVE-2013-1665	for	OpenStack/etc.

Add	missing	parser_list	argument	to	sax.make_parser().	The
argument	is	ignored,	though.	(thanks	to	Florian	Apolloner)

Add	demo	exploit	for	external	entity	attack	on	Python’s	SAX
parser,	XML-RPC	and	WebDAV.

defusedxml	0.3

Release	date:	19-Feb-2013

Improve	documentation

defusedxml	0.2

Release	date:	15-Feb-2013

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 23/24

Rename	ExternalEntitiesForbidden	to
ExternalReferenceForbidden

Rename	defusedxml.lxml.check_dtd()	to	check_docinfo()

Unify	argument	names	in	callbacks

Add	arguments	and	formatted	representation	to	exceptions

Add	forbid_external	argument	to	all	functions	and	classs

More	tests

LOTS	of	documentation

Add	example	code	for	other	languages	(Ruby,	Perl,	PHP)	and
parsers	(Genshi)

Add	protection	against	XML	and	gzip	attacks	to	xmlrpclib

defusedxml	0.1

Release	date:	08-Feb-2013

Initial	and	internal	release	for	PSRT	review

Help

Installing	packages

Uploading	packages

User	guide

FAQs

About	PyPI

PyPI	on	Twitter

Infrastructure	dashboard

Package	index	name
retention

Our	sponsors

Contributing	to	PyPI

Bugs	and	feedback

Contribute	on	GitHub

Using	PyPI

Code	of	conduct

Report	security	issue

æ

æ

æ

æ

æ

æ

æ

æ

8/5/2019 defusedxml · PyPI

https://pypi.org/project/defusedxml/0.5.0/ 24/24

Development	credits Privacy	policy

Terms	of	use

Status:	All	Systems	Operational

Developed	and	maintained	by	the	Python	community,	for	the	Python	community.	
Donate	today!

©	2019	Python	So�ware	Foundation

	 	 	 	

	 	 	 	

æ æ

æ

æ

Desktop	version

Elastic
Search

Pingdom
Monitoring

Google
BigQuery

Sentry
Error	logging

AWS
Cloud	computing

DataDog
Monitoring

Fastly
CDN

SignalFx
Supporter

DigiCert
EV	certificate

StatusPage
Status	page

