SonicWall® SonicOS 6.5 Security Configuration
Contents

Part 1. Firewall Settings

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Advanced Firewall Settings</td>
<td>8</td>
</tr>
<tr>
<td>Firewall Settings > Advanced</td>
<td>9</td>
</tr>
<tr>
<td>Detection Prevention</td>
<td>10</td>
</tr>
<tr>
<td>Dynamic Ports</td>
<td>10</td>
</tr>
<tr>
<td>Source Routed Packets</td>
<td>12</td>
</tr>
<tr>
<td>Connections</td>
<td>12</td>
</tr>
<tr>
<td>Dynamic Connection Sizing</td>
<td>14</td>
</tr>
<tr>
<td>Access Rule Service Options</td>
<td>15</td>
</tr>
<tr>
<td>IP and UDP Checksum Enforcement</td>
<td>15</td>
</tr>
<tr>
<td>Jumbo Frame</td>
<td>15</td>
</tr>
<tr>
<td>IPv6 Advanced Configuration</td>
<td>16</td>
</tr>
<tr>
<td>Control Plane Flood Protection</td>
<td>17</td>
</tr>
<tr>
<td>Configuring Bandwidth Management</td>
<td>18</td>
</tr>
<tr>
<td>Understanding Bandwidth Management</td>
<td>18</td>
</tr>
<tr>
<td>Configuring the Bandwidth Management Settings</td>
<td>20</td>
</tr>
<tr>
<td>Global Bandwidth Management</td>
<td>23</td>
</tr>
<tr>
<td>Advanced Bandwidth Management</td>
<td>31</td>
</tr>
<tr>
<td>Configuring Bandwidth Management</td>
<td>34</td>
</tr>
<tr>
<td>Upgrading to Advanced Bandwidth Management</td>
<td>43</td>
</tr>
<tr>
<td>Configuring Flood Protection</td>
<td>45</td>
</tr>
<tr>
<td>TCP View</td>
<td>46</td>
</tr>
<tr>
<td>UDP View</td>
<td>56</td>
</tr>
<tr>
<td>ICMP View</td>
<td>58</td>
</tr>
<tr>
<td>Configuring Firewall Multicast Settings</td>
<td>61</td>
</tr>
<tr>
<td>Multicast Snooping</td>
<td>62</td>
</tr>
<tr>
<td>Multicast Policies</td>
<td>62</td>
</tr>
<tr>
<td>IGMP State Table</td>
<td>63</td>
</tr>
<tr>
<td>Managing Quality of Service</td>
<td>67</td>
</tr>
<tr>
<td>Classification</td>
<td>67</td>
</tr>
<tr>
<td>Marking</td>
<td>68</td>
</tr>
<tr>
<td>Conditioning</td>
<td>68</td>
</tr>
<tr>
<td>802.1p and DSCP QoS</td>
<td>70</td>
</tr>
<tr>
<td>Bandwidth Management</td>
<td>79</td>
</tr>
<tr>
<td>Glossary</td>
<td>80</td>
</tr>
<tr>
<td>Configuring SSL Control</td>
<td>83</td>
</tr>
<tr>
<td>About SSL Control</td>
<td>83</td>
</tr>
<tr>
<td>SSL Control Configuration</td>
<td>90</td>
</tr>
</tbody>
</table>
Part 2. Security Services

Managing SonicWall Security Services ... 97
SonicWall Security Services ... 97
Configuring Security Services ... 97

Configuring Content Filtering Service .. 101
About CFS ... 102
CFS Blocking of Individual Videos .. 104
Enabling CFS .. 105
Enabling the Local CFS Server .. 105
Configuring CFS Policies ... 106
Configuring CFS Custom Categories .. 106

DPI-SSL Enforcement .. 113
DPI-SSL Enforcement Status ... 114
DPI-SSL Enforcement .. 114
Managing DPI-SSL Enforcement .. 114

Activating SonicWall Client Anti-Virus 116
Configuring Client Anti-Virus Service .. 117

Configuring Client CF Enforcement .. 123
Enabling Client CFS in Network Zones 125

Managing SonicWall Gateway Anti-Virus Service 126
SonicWall GAV Multi-Layered Approach 126
SonicWall GAV Architecture .. 129
Activating the Gateway Anti-Virus, Anti-Spyware, and IPS License ... 130
Setting Up SonicWall Gateway Anti-Virus Protection 131
Viewing SonicWall GAV Signatures .. 140

Activating Intrusion Prevention Service 142
Intrusion Prevention Service Overview 142
Configuring Intrusion Prevention Service 144

Viewing Capture ATP Status .. 152
About the Chart .. 153
About the Log Table ... 154
Uploading a File for Analysis ... 156
Viewing Threat Reports .. 157

Configuring Capture ATP .. 167
About Capture ATP .. 168
Activating the Capture ATP License .. 169
Enabling Capture ATP ... 169
Part 3. Anti-Spam

Activating Anti-Spam Service 177
Anti-Spam Overview ... 177
Activating Anti-Spam Service Protection 178

Configuring SonicWall Real-Time Blacklist 185
Real-Time Black List Filtering 185
Configuring the RBL Filter 186

Configuring Geo-IP Filters 190
Configuring Geo-IP Filtering 190
Creating a Custom Country List 193
Customizing Web Block Page Settings 196
Using Geo-IP Filter Diagnostics 198

Configuring Botnet Filters 201
Configuring Botnet Filtering 202
Creating a Custom Botnet List 203
Configuring Dynamic HTTP Authentication 207
Customizing Web Block Page Settings 208
Using Botnet Filter Diagnostics 210

Part 3. Anti-Spam

About Anti-Spam ... 215
Anti-Spam Overview ... 215
How Does the Anti-Spam Service Work? 216
Purchasing an Anti-Spam License 220

Viewing Anti-Spam Status 222
Anti-Spam Service Status 223
Monitoring Status ... 223
Email Stream Diagnostics Capture 224
MX Record Lookup and Banner Check 226
GRID IP Check .. 227

Enabling and Activating Anti-Spam 228
Activating Anti-Spam ... 229
Installing the Junk Store 230
Configuring Email Threat Categories 231
Configuring Access Lists 232
Configuring Advanced Options 234
Viewing Anti-Spam Statistics 236

Configuring Anti-Spam Logging 237
SonicWall SonicOS 6.5 Security Configuration

Contents

Editing an LDAP Server Configuration .. 287
Deleting an LDAP Server ... 287
Download Anti-Spam Desktop Buttons ... 288

Part 4. DPI-SSL

About DPI-SSL ... 290
Functionality ... 290
Deployment Scenarios ... 293
Customizing DPI-SSL ... 293
Connections per Appliance Model ... 294

Configuring Client DPI-SSL Settings .. 295
Viewing DPI-SSL Status .. 295
Configuring Client DPI-SSL ... 296

Configuring Server DPI-SSL Settings .. 310
DPI-SSL > Server SSL .. 310
Configuring DPI-SSL Server Settings .. 311

Part 5. DPI-SSH

Configuring DPI-SSH ... 314
About DPI-SSH ... 314
Supported Clients/Servers and Connections 315
Supported Key Exchange Algorithms .. 315
Caveats ... 316
Activating Your DPI-SSH License .. 316
Configuring DPI-SSH ... 318
DPI-SSH Blocking of Port Forwarding .. 319

Part 6. SonicWall Support

SonicWall Support ... 322
About This Document .. 323
Part 1

Firewall Settings

• Configuring Advanced Firewall Settings
• Configuring Bandwidth Management
• Configuring Flood Protection
• Configuring Firewall Multicast Settings
• Managing Quality of Service
• Configuring SSL Control
Configuring Advanced Firewall Settings

- Firewall Settings > Advanced on page 9
- Detection Prevention on page 10
- Dynamic Ports on page 10
- Source Routed Packets on page 12
- Connections on page 12
- Access Rule Service Options on page 15
- IP and UDP Checksum Enforcement on page 15
- Jumbo Frame on page 15
- IPv6 Advanced Configuration on page 16
- Control Plane Flood Protection on page 17
Firewall Settings > Advanced

This section provides advanced firewall settings for configuring detection prevention, dynamic ports, source routed packets, connection selection, and access rule options. To configure advanced access rule options, select Security Configuration | Firewall Settings > Advanced Settings.

- Detection Prevention on page 10
- Dynamic Ports on page 10
- Source Routed Packets on page 12
- Connections on page 12
- Dynamic Connection Sizing on page 14
- Access Rule Service Options on page 15
- IP and UDP Checksum Enforcement on page 15
- Jumbo Frame on page 15
- IPv6 Advanced Configuration on page 16
- Control Plane Flood Protection on page 17

The Firewall Settings > Advanced Settings page includes the following firewall configuration option groups:
Detection Prevention

- **Enable Stealth Mode** - By default, the security appliance responds to incoming connection requests as either “blocked” or “open.” If you enable Stealth Mode, your security appliance does not respond to blocked inbound connection requests. Stealth Mode makes your security appliance essentially invisible to hackers.

- **Randomize IP ID** - Select Randomize IP ID to prevent hackers using various detection tools from detecting the presence of a security appliance. IP packets are given random IP IDs, which makes it more difficult for hackers to "fingerprint" the security appliance.

- **Decrement IP TTL for forwarded traffic** - Time-to-live (TTL) is a value in an IP packet that tells a network router whether or not the packet has been in the network too long and should be discarded. Select this option to decrease the TTL value for packets that have been forwarded and, therefore, have already been in the network for some time.

- **Never generate ICMP Time-Exceeded packets** - The firewall generates Time-Exceeded packets to report when it has dropped a packet because its TTL value has decreased to zero. Select this option if you do not want the firewall to generate these reporting packets.

Dynamic Ports

- **Enable FTP Transformations for TCP port(s) in Service Object** - Select from the service group drop-down menu to enable FTP transformations for a particular service object. By default, service group FTP (All) is selected.

 FTP operates on TCP ports 20 and 21, where port 21 is the Control Port and 20 is Data Port. When using non-standard ports (for example, 2020, 2121), however, SonicWall drops the packets by default as it is not able to identify it as FTP traffic. The Enable FTP Transformations for TCP port(s) in Service Object option allows you to select a Service Object to specify a custom control port for FTP traffic.

 To illustrate how this feature works, consider the following example of an FTP server behind the SonicWall listening on port 2121:

 - On the Policies | Objects > Address Objects page, create an Address Object for the private IP address of the FTP server with the following values:
 - **Name**: FTP Server Private
 - **Zone**: LAN
 - **Type**: Host
 - **IP Address**: 192.168.168.2
b On the Policies | Objects > Services Objects page, create a custom Service for the FTP Server with the following values:
- **Name**: FTP Custom Port Control
- **Protocol**: TCP(6)
- **Port Range**: 2121 - 2121

c On the Policies | Rules > NAT Policies page, create the following NAT Policy:

![NAT Policy Settings](image)

- **Original Source**: Any
- **Translated Source**: Original
- **Original Destination**: X1 IP
- **Translated Destination**: FTP Server Private
- **Original Service**: FTP Custom Port
- **Translated Service**: Original
- **Inbound Interface**: X1
- **Outbound Interface**: Any
- **IP Version**: IPv4 Only
- **Enable NAT Policy**: ✔
- **Create a reflexive policy**: ✔

d On the Policies | Rules > Access Rules page, create the following Access Rule:

![Access Rule Settings](image)

- **Action**: Allow
- **From**: WAN
- **To**: LAN
- **Source Port**: Any
- **Service**: FTP Custom Port
- **Source**: Any
- **Destination**: X1 IP
- **Users Included**: All
- **Users Excluded**: None
- **Schedule**: Always on
- **Comment**:
- **Enable Logging**: ☑
- **Enable Fragmented Packets**: ☑
- **Enable Flow Reporting**: ☑
- **Enable Trap Monitor**: ☑
- **Enable Management**: ☑
e On the Security Configuration | Firewall Settings > Advanced Settings page, from the Enable FTP Transformations for TCP port(s) in Service Object drop-down menu, select the FTP Custom Port Control Service Object.

NOTE: For more information on configuring service groups and service objects, refer to SonicWall SonicOS 6.5 System Setup.

- **Enable support for Oracle (SQLNet)** - Select this option if you have Oracle9i or earlier applications on your network. For Oracle10g or later applications, it is recommended that this option not be selected.

 For Oracle9i and earlier applications, the data channel port is different from the control connection port. When this option is enabled, a SQLNet control connection is scanned for a data channel being negotiated. When a negotiation is found, a connection entry for the data channel is created dynamically, with NAT applied if necessary. Within SonicOS, the SQLNet and data channel are associated with each other and treated as a session.

 For Oracle10g and later applications, the two ports are the same, so the data channel port does not need to be tracked separately; thus, the option does not need to be enabled.

- **Enable RTSP Transformations** - Select this option to support on-demand delivery of real-time data, such as audio and video. RTSP (Real Time Streaming Protocol) is an application-level protocol for control over delivery of data with real-time properties.

Source Routed Packets

- **Drop Source Routed IP Packets** - (Enabled by default.) Clear this checkbox if you are testing traffic between two specific hosts and you are using source routing.

 IP Source Routing is a standard option in IP that allows the sender of a packet to specify some or all of the routers that should be used to get the packet to its destination.

 This IP option is typically blocked from use as it can be used by an eavesdropper to receive packets by inserting an option to send packets from A to B via router C. The routing table should control the path that a packet takes, so that it is not overridden by the sender or a downstream router.

Connections

NOTE: For more information on configuring service groups and service objects, refer to SonicWall SonicOS 6.5 System Setup.

IMPORTANT: Any change to the Connections setting requires the SonicWall security appliance be restarted for the change to be implemented.

The Connections section provides the ability to fine-tune the firewall to prioritize for either optimal throughput or an increased number of simultaneous connections that are inspected by Deep-Packet Inspection (DPI) services. See Connection count.
Configuration of Advanced Firewall Settings

Only one option can be chosen. There is no change in the level of security protection provided by the DPI Connections settings.

- **Maximum SPI Connections (DPI services disabled)** - This option (Stateful Packet Inspection) does not provide SonicWall DPI Security Services protection and optimizes the firewall for maximum number of connections with only stateful packet inspection enabled. This option should be used by networks that require only stateful packet inspection, which is not recommended for most SonicWall network security appliance deployments.

- **Maximum DPI Connections (DPI services enabled)** - This is the default and recommended setting for most SonicWall network security appliance deployments.

- **DPI Connections (DPI services enabled with additional performance optimization)** - This option is intended for performance critical deployments. This option trades off the number of maximum DPI connections for an increased firewall DPI inspection throughput.

NOTE: If either DPI Connections option is chosen and the DPI connection count is greater than 250,000, you can have the firewall resize the DPI connection and DPI-SSL counts dynamically. For more information, see Dynamic Connection Sizing.

The maximum number of connections depends on the physical capabilities of the particular model of SonicWall security appliance as shown in **Connection count**. Flow Reporting does not reduce the connection count on NSA Series and SM Series firewalls.

<table>
<thead>
<tr>
<th>Platform</th>
<th>SPI connections</th>
<th>Maximum connections</th>
<th>DPI Performance optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperMassive 9600</td>
<td>10,000,000</td>
<td>2,000,000</td>
<td>1,750,000</td>
</tr>
<tr>
<td>SuperMassive 9400</td>
<td>7,500,000</td>
<td>1,500,000</td>
<td>1,250,000</td>
</tr>
<tr>
<td>SuperMassive 9200</td>
<td>5,000,000</td>
<td>1,500,000</td>
<td>1,250,000</td>
</tr>
<tr>
<td>NSo 9650</td>
<td>12,500,000</td>
<td>5,000,000</td>
<td>4,750,000</td>
</tr>
<tr>
<td>NSo 9450</td>
<td>10,000,000</td>
<td>4,000,000</td>
<td>3,750,000</td>
</tr>
<tr>
<td>NSo 9250</td>
<td>7,500,000</td>
<td>3,000,000</td>
<td>2,750,000</td>
</tr>
<tr>
<td>NSo 6650</td>
<td>5,000,000</td>
<td>2,000,000</td>
<td>1,750,000</td>
</tr>
<tr>
<td>NSo 5650</td>
<td>4,000,000</td>
<td>1,500,000</td>
<td>1,250,000</td>
</tr>
<tr>
<td>NSo 4650</td>
<td>3,000,000</td>
<td>1,000,000</td>
<td>750,000</td>
</tr>
<tr>
<td>NSo 3650</td>
<td>2,000,000</td>
<td>750,000</td>
<td>500,000</td>
</tr>
<tr>
<td>NSo 2650</td>
<td>1,000,000</td>
<td>500,000</td>
<td>500,000</td>
</tr>
<tr>
<td>NSA 6600</td>
<td>2,000,000</td>
<td>1,000,000</td>
<td>750,000</td>
</tr>
<tr>
<td>NSA 5600</td>
<td>2,000,000</td>
<td>1,000,000</td>
<td>750,000</td>
</tr>
<tr>
<td>NSA 4600</td>
<td>1,000,000</td>
<td>500,000</td>
<td>375,000</td>
</tr>
<tr>
<td>NSA 3600</td>
<td>750,000</td>
<td>375,000</td>
<td>250,000</td>
</tr>
<tr>
<td>NSA 2600</td>
<td>500,000</td>
<td>250,000</td>
<td>125,000</td>
</tr>
<tr>
<td>TZ600</td>
<td>150,000</td>
<td>125,000</td>
<td>125,000</td>
</tr>
<tr>
<td>TZ500/TZ500 W</td>
<td>125,000</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>TZ400/TZ400 W</td>
<td>100,000</td>
<td>90,000</td>
<td>90,000</td>
</tr>
<tr>
<td>TZ300/TZ300 W</td>
<td>50,000</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>SOHO W</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>
Mousing over the Question Mark icon next to the Connections heading displays a pop-up table of the maximum number of connections for your specific SonicWall security appliance for the various configuration permutations. The table entry for your current configuration is indicated in the popup table.

Dynamic Connection Sizing

- **NOTE:** Dynamic connection sizing is supported on NSA 3600 Series (and higher) and SuperMassive Series network security appliances.

If either Maximum DPI Connections (DPI services enabled) or DPI Connections (DPI services enabled with additional performance optimization) is selected for Connections and the DPI connection count is greater than 250,000, the Dynamic Connection Sizing section displays. Configuring this option allows you to have the firewall increase the number of DPI-SSL connections by 750 by reducing the number of DPI connections by 1250000 dynamically.

- **DPI Connections** – Allows you to choose the maximum number of DPI connections, in increments of 125,000. Changing this count changes the value in the DPI-SSL Connections drop-down menu.
- **DPI-SSL Connections** – Allows you to choose the maximum number of DPI-SSL Connections, in increments of 750. Changing this count changes the value in the DPI-SSL Connections drop-down menu.

For example, if the number of DPI connections selected in the DPI Connections drop-down menu is 1250000, the number of DPI-SSL connections in the DPI-SSL Connections drop-down menu is 165000. If you select 1000000 from the DPI Connections drop-down menu, the number of DPI-SSL connections changes to 180000. If you select 12000 from the DPI-SSL Connections drop-down menu, the number of DPI connections changes to 2000000.
Access Rule Service Options

- **Force inbound and outbound FTP data connections to use default port 20** - The default configuration allows FTP connections from port 20, but remaps outbound traffic to a port such as 1024. If the checkbox is selected, any FTP data connection through the security appliance must come from port 20 or the connection is dropped. The event is then logged as a log event on the security appliance.

- **Apply firewall rules for intra-LAN traffic to/from the same interface** - Applies firewall rules that are received on a LAN interface and destined for the same LAN interface. Typically, this only necessary when secondary LAN subnets are configured.

- **Always issue RST for discarded outgoing TCP connections** – Sends an RST (reset) packet to drop the connection for discarded outgoing TCP connections. This option is selected by default.

- **Enable ICMP Redirect on LAN zone** – Redirects ICMP packets on LAN zone interfaces. This option is selected by default.

- **Drop packets which source IP is subnet broadcast address** – Drops packets when the detected IP address is recognized as the one by the subnet.

IP and UDP Checksum Enforcement

- **Enable IP header checksum enforcement** - Select this to enforce IP header checksums. Packets with incorrect checksums in the IP header are dropped. This option is disabled by default.

- **Enable UDP checksum enforcement** - Select this to enforce UDP packet checksums. Packets with incorrect checksums are dropped. This option is disabled by default.

Jumbo Frame

NOTE: Jumbo frames are supported on NSA 3600 and higher appliances.
• **Enable Jumbo Frame support** – Enabling this option increases throughput and reduces the number of Ethernet frames to be processed. Throughput increase may not be seen in some cases. However, there will be some improvement in throughput if the packets traversing are really jumbo size.

NOTE: Jumbo frame packets are 9000 kilobytes in size and increase memory requirements by a factor of 4. Interface MTUs must be changed to 9000 bytes after enabling jumbo frame support as described in *SonicWall SonicOS 6.5 System Setup*.

IPv6 Advanced Configuration

- **Drop IPv6 Routing Header type 0 packets** – Select this to prevent a potential DoS attack that exploits IPv6 Routing Header type 0 (RH0) packets. When this setting is enabled, RH0 packets are dropped unless their destination is the SonicWall security appliance and their Segments Left value is 0. Segments Left specifies the number of route segments remaining before reaching the final destination. Enabled by default. For more information, see http://tools.ietf.org/html/rfc5095.

- **Decrement IPv6 hop limit for forwarded traffic** – Similar to IPv4 TTL, when selected, the packet is dropped when the hop limit has been decremented to 0. Disabled by default.

- **Drop and log network packets whose source or destination address is reserved by RFC** – Select this option to reject and log network packets that have a source or destination address of the network packet defined as an address reserved for future definition and use as specified in RFC 4921 for IPv6. Disabled by default.

- **Never generate IPv6 ICMP Time-Exceeded packets** – By default, the SonicWall appliance generates IPv6 ICMP Time-Exceeded Packets that report when the appliance drops packets due to the hop limit decrementing to 0. Select this option to disable this function; the SonicWall appliance will not generate these packets. This option is selected by default.

- **Never generate IPv6 ICMP destination unreachable packets** – By default, the SonicWall appliance generates IPv6 ICMP destination unreachable packets. Select this option to disable this function; the SonicWall appliance will not generate these packets. This option is selected by default.

- **Never generate IPv6 ICMP redirect packets** – By default, the SonicWall appliance generates IPv6 ICMP redirect packets. Select this option to disable this function; the SonicWall appliance will not generate redirect packets. This option is selected by default.

- **Never generate IPv6 ICMP parameter problem packets** – By default, the SonicWall appliance generates IPv6 ICMP parameter problem packets. Select this option to disable this function; the SonicWall appliance will not generate these packets. This option is selected by default.

- **Allow to use Site-Local-Unicast Address** – By default, the SonicWall appliance allows Site-Local Unicast (SLU) address and this checkbox is selected. As currently defined, SLU addresses are ambiguous and can...
present multiple sites. The use of SLU addresses may adversely affect network security through leaks, ambiguity, and potential misrouting. To avoid the issue, deselect the checkbox to prevent the appliance from using SLU addresses.

- **Enforce IPv6 Extension Header Validation** – Select this option if you want the SonicWall appliance to check the validity of IPv6 extension headers. By default, this option is disabled.

 When both this option and the **Decrement IPv6 hop limit for forwarded traffic** option are selected, the **Enforce IPv6 Extension Header Order Check** option becomes available. (You may need to refresh the page.)

 - **Enforce IPv6 Extension Header Order Check** – Select this option to have the SonicWall appliance check the order of IPv6 Extension Headers. By default, this option is disabled.

- **Enable NetBIOS name query response for ISATAP** – Select this option if you want the SonicWall appliance to generate a NetBIOS name in response to a broadcast ISATAP query. By default, this option is disabled.

 NOTE: Select this option only when one ISATAP tunnel interface is configured.

Control Plane Flood Protection

- **Enable Control Plane Flood Protection** – Select to have the firewall forward only control traffic destined to the firewall to the system Control Plane core (Core 0) if traffic on the Control Plane exceeds the threshold specified in **Control Flood Protection Threshold (CPU %)**. This option is not enabled by default.

 To give precedence to legitimate control traffic, excess data traffic is dropped. This restriction prevents too much data traffic from reaching the Control Plane core, which can cause slow system response and potential network connection drops. The percentage configured for control traffic is guaranteed.

 - **Control Flood Protection Threshold (CPU %)** – Enter the flood protection threshold as a percentage. The minimum is 5 (%), the maximum is 95, and the default is 75.
Configuring Bandwidth Management

Bandwidth management (BWM) is a means of allocating bandwidth resources to critical applications on a network.

SonicOS offers an integrated traffic shaping mechanism through its outbound (Egress) and inbound (Ingress) BWM interfaces. Egress BWM can be applied to traffic sourced from Trusted and Public zones travelling to Untrusted and Encrypted zones. Ingress BWM can be applied to traffic sourced from Untrusted and Encrypted zones travelling to Trusted and Public zones.

Topics:

- Understanding Bandwidth Management
- Configuring the Bandwidth Management Settings
- Global Bandwidth Management
- Advanced Bandwidth Management
- Configuring Bandwidth Management
- Upgrading to Advanced Bandwidth Management

NOTE: Although BWM is a fully integrated Quality of Service (QoS) system, wherein classification and shaping is performed on the single SonicWall appliance, effectively eliminating the dependency on external systems and thus obviating the need for marking, it is possible to concurrently configure BWM and QoS (layer 2 and/or layer 3 marking) settings on a single Access Rule. This allows those external systems to benefit from the classification performed on the firewall even after it has already shaped the traffic. Refer to Managing Quality of Service for BWM QoS details.

Understanding Bandwidth Management

The SonicWall network security appliance uses BWM to control ingress and egress traffic. BWM allows network administrators to guarantee minimum bandwidth and prioritize traffic based on access rules created in the Policies | Rules > Access Rules page of the management interface. By controlling the amount of bandwidth to an application or user, you can prevent a small number of applications or users to consume all available bandwidth. Balancing the bandwidth allocated to different network traffic and then assigning priorities to traffic can improve network performance.

BWM priority queues lists the SonicOS priority queues.

<table>
<thead>
<tr>
<th>BWM priority queues</th>
<th>0 – Realtime</th>
<th>1 – Highest</th>
<th>2 – High</th>
<th>3 – Medium High</th>
<th>4 – Medium</th>
<th>5 – Medium Low</th>
<th>6 – Low</th>
<th>7 – Lowest</th>
</tr>
</thead>
</table>

BWM priority queues:

- 0 – Realtime
- 1 – Highest
- 2 – High
- 3 – Medium High
- 4 – Medium
- 5 – Medium Low
- 6 – Low
- 7 – Lowest
Various types of bandwidth management are available and can be selected on the Security Configuration | Firewall Settings > Bandwidth Management page.

Bandwidth management types

<table>
<thead>
<tr>
<th>BWM Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>Enables Advanced Bandwidth Management. Maximum egress and ingress bandwidth limitations can be configured on any interface, per interface, by configuring bandwidth objects, access rules, and application policies and attaching them to the interface.</td>
</tr>
<tr>
<td>Global</td>
<td>All zones can have assigned guaranteed and maximum bandwidth to services and have prioritized traffic. When global BWM is enabled on an interface, all of the traffic to and from that interface is bandwidth managed according to the priority queue. Default Global BWM queues: 2 — High 4 — Medium 6 — Low 4 Medium is the default priority for all traffic that is not managed by an Access rule or an Application Control Policy that is BWM enabled. For traffic more than 1 Gbps, maximum bandwidth is limited to 1 Gbps because of queuing, which may limit the number of packets processed.</td>
</tr>
<tr>
<td>None</td>
<td>(Default) Disables BWM.</td>
</tr>
</tbody>
</table>

If the bandwidth management type is None, and there are three traffic types that are using an interface, if the link capacity of the interface is 100 Mbps, the cumulative capacity for all three types of traffic is 100 Mbps.

When Global bandwidth management is enabled on an interface, all traffic to and from that interface is bandwidth managed. If the available ingress and egress traffic is configured at 10 Mbps, then by default, all three traffic types are sent to the medium priority queue. The medium priority queue, by default, has a guaranteed bandwidth of 50 percent and a maximum bandwidth of 100 percent. If no Global bandwidth management policies are configured, the cumulative link capacity for each traffic type is 10 Mbps.

NOTE: BWM rules each consume memory for packet queuing, so the number of allowed queued packets and rules on SonicOS is limited by platform (values are subject to change).

Global uses the unused guaranteed bandwidth from other queues for maximum bandwidth. If there is only default or single-queue traffic and all the queues have a total of 100% allocated as guaranteed, Global uses the unused global bandwidth from other queues to give you up to maximum bandwidth for the default/single queue.
Glossary

Bandwidth Management (BWM)
Any of a variety of algorithms or methods used to shape traffic or police traffic. Shaping often refers to the management of outbound traffic, while policing often refers to the management of inbound traffic (also known as admission control). There are many different methods of bandwidth management, including various queuing and discarding techniques, each with their own design strengths. SonicWall employs a Token Based Class Based Queuing method for inbound and outbound BWM, as well as a discard mechanism for certain types of inbound traffic.

Guaranteed Bandwidth
A declared percentage of the total available bandwidth on an interface which is always granted to a certain class of traffic. Applicable to both inbound and outbound BWM. The total Guaranteed Bandwidth across all BWM rules cannot exceed 100% of the total available bandwidth. SonicOS 5.0 and higher enhances the Bandwidth Management feature to provide rate limiting functionality. You can create traffic policies that specify maximum rates for Layer 2, 3, or 4 network traffic. The Guaranteed Bandwidth can also be set to 0%.

Ingress BWM
The ability to shape the rate at which traffic enters a particular interface. For TCP traffic, actual shaping occurs when the rate of the ingress flow is adjusted by the TCP Window Adjustment mechanism. For UDP traffic, a discard mechanism is used as UDP has no native feedback controls.

Maximum Bandwidth:
A declared percentage of the total available bandwidth on an interface defining the maximum bandwidth to be allowed to a certain class of traffic. Applicable to both inbound and outbound BWM. Used as a throttling mechanism to specify a bandwidth rate limit. The Bandwidth Management feature is enhanced to provide rate-limiting functionality. You can create traffic policies that specify maximum rates for Layer 2, 3, or 4 network traffic. This enables bandwidth management in cases where the primary WAN link fails over to a secondary connection that cannot handle as much traffic. The Maximum Bandwidth can be set to 0%, which prevents all traffic.

Egress BWM
Conditioning the rate at which traffic is sent out an interface. Outbound BWM uses a credit (or token) based queuing system with 8 priority rings to service different types of traffic, as classified by Access Rules.

Priority
An additional dimension used in the classification of traffic. SonicOS uses eight priority values (0 = highest, 7 = lowest) for the queue structure used for BWM. Queues are serviced in the order of their priority.

Queuing
To effectively make use of the available bandwidth on a link. Queues are commonly employed to sort and separately manage traffic after it has been classified.

Configuring the Bandwidth Management Settings

BWM works by first enabling bandwidth management in the Security Configuration | Firewall Settings | Bandwidth Management page, enabling BWM on an interface/firewall/app rule, and then allocating the available bandwidth for that interface on the ingress and egress traffic. It then assigns individual limits for each class of network traffic. By assigning priorities to network traffic, applications requiring a quick response time, such as Telnet, can take precedence over traffic requiring less response time, such as FTP.
To view the BWM configuration, navigate to the Security Configuration | Firewall Settings > Bandwidth Management page.

NOTE: The default settings for this page consists of three priorities with preconfigured guaranteed and maximum bandwidth. The medium priority has the highest guaranteed value as this priority queue is used by default for all traffic not governed by a BWM-enabled policy.

NOTE: The defaults are set by SonicWall to provide BWM ease-of-use. It is recommended that you review your specific bandwidth needs and enter the values on this page accordingly.

Bandwidth Management Type option:

IMPORTANT: When you change the Bandwidth Management Type from:

- **Global** to **Advanced**, the default BWM actions that are in use in any App Rules policies are automatically converted to **Advanced BWM** settings.

- **Advanced** to **Global**, the default BWM actions are converted to **BWM Global-Medium**.

The firewall does not store your previous action priority levels when you switch the Type back and forth. You can view the conversions on the Policies | Rules > Application Control page.

- **Advanced** — Any zone can have guaranteed and maximum bandwidth and prioritized traffic assigned per interface.

- **Global** — All zones can have assigned guaranteed and maximum bandwidth to services and have prioritized traffic. For traffic more than 1 Gbps, maximum bandwidth is limited to 1 Gbps.

- **None** — Disables BWM. This is the default.
Interface BWM Settings — Mousing over the **Question Mark** icon displays a table showing whether the BWM settings are disabled or enabled for ingress and egress on the various interfaces:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Interface Bandwidth Settings</th>
<th>Maximum (Burst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Read Only</td>
<td>100 %</td>
</tr>
<tr>
<td>1</td>
<td>Highest</td>
<td>100 %</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>100 %</td>
</tr>
<tr>
<td>3</td>
<td>Medium High</td>
<td>100 %</td>
</tr>
<tr>
<td>4</td>
<td>Medium</td>
<td>100 %</td>
</tr>
<tr>
<td>5</td>
<td>Medium Low</td>
<td>100 %</td>
</tr>
<tr>
<td>6</td>
<td>Low</td>
<td>100 %</td>
</tr>
<tr>
<td>7</td>
<td>Lowest</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Global Priority Bandwidth table — Displays this information about the priorities:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Interface Bandwidth Settings</th>
<th>Maximum (Burst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 High</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>4 Medium</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>6 Low</td>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

TIP: You cannot disable priority **4 Medium**, but you can change its percentage.

The sum of all guaranteed bandwidth must not exceed 100%. If the bandwidth exceeds 100%, the **Total** number becomes red. Also, the guaranteed bandwidth must not be greater than the maximum bandwidth per queue.

Maximum\Burst — Enables the maximum/burst rate, as a percentage, for the enabled priority. The corresponding **Enable** checkbox must be checked for the rate to take effect.
Action Objects

Action Objects define how the App Rules policy reacts to matching events. You can customize an action or select one of the predefined default actions. The predefined actions are displayed in the App Control Policy Settings page when you add or edit a policy from the App Rules page.

Custom BWM actions behave differently than the default BWM actions. Custom BWM actions are configured by adding a new action object from the Policies | Objects > Action Objects page and selecting the Bandwidth Management action type. Custom BWM actions and policies using them retain their priority level setting when the Bandwidth Management Type is changed from Global to Advanced, and from Advanced to Global.

A number of BWM action options are also available in the predefined, default action list. The BWM action options change depending on the Bandwidth Management Type setting on the Firewall Settings > Bandwidth Management page. If the Bandwidth Management Type is set to:

- **Global**, all eight levels of BWM are available.
- **Advanced**, no priorities are set. The priorities are set by configuring a bandwidth object under Policies | Objects > Bandwidth Objects.

Adding a policy: Default actions lists the predefined default actions that are available when adding a policy.

Adding a policy: Default actions

<table>
<thead>
<tr>
<th>Global Bandwidth Management</th>
<th>Advanced Bandwidth Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWM Global-Realtime</td>
<td>Advanced BWM High</td>
</tr>
<tr>
<td>BWM Global-Highest</td>
<td>Advanced BWM Medium</td>
</tr>
<tr>
<td>BWM Global-High</td>
<td>Advanced BWM Low</td>
</tr>
<tr>
<td>BWM Global-Medium High</td>
<td></td>
</tr>
<tr>
<td>BWM Global-Medium</td>
<td></td>
</tr>
<tr>
<td>BWM Global-Medium Low</td>
<td></td>
</tr>
<tr>
<td>BWM Global-Low</td>
<td></td>
</tr>
<tr>
<td>BWM Global-Lowest</td>
<td></td>
</tr>
</tbody>
</table>

Global Bandwidth Management

Global Bandwidth Management can be configured using the following methods:

- **Configuring Bandwidth Management**

 - **IMPORTANT**: BWM must be enabled on Security Configuration | Firewall Settings > Bandwidth Management first.

- **Configuring Global BWM on an Interface**
- **Configuring Global BWM in an Access Rule**
- **Configuring Global BWM in an Action Object**
- **Configuring Application Rules**
- **Configuring App Flow Monitor**
- **Elemental Bandwidth Settings**
- **Zone-Free Bandwidth Management**
- **Weighted Fair Queuing**
Configuring Bandwidth Management

To set the Bandwidth Management type to Global:

2. Set the Bandwidth Management Type option to Global.

3. Enable the priorities that you want by selecting the appropriate checkboxes in the Enable column.

 NOTE: You must enable the priorities on this page to be able to configure these priorities in Access Rules, App Rules, and Action Objects.

4. Enter the Guaranteed bandwidth percentage that you want for each selected priority. The total amount cannot exceed 100%.

5. Enter the Maximum Burst bandwidth percentage that you want for each selected priority.

6. Click Accept.

Configuring Global BWM on an Interface

IMPORANT: Global BWM must be enabled on Firewall Settings > Bandwidth Management first, as described in Configuring Bandwidth Management.

To configure BWM on an interface:

1. Navigate to System Setup | Network > Interfaces.

2. Click the Edit button for the appropriate interface. The Edit Interface dialog displays.
3 Click Advanced.

![Advanced Settings](image)

NOTE: Displayed options may differ depending on how the interface is configured.

4 Scroll to Bandwidth Management.

![Bandwidth Management](image)

5 Select either or both the **Enable Interface Egress Bandwidth Limitation** and **Enable Interface Ingress Bandwidth Limitation** checkbox. These options are not selected by default.

When either or both of these options are selected, if there isn’t a corresponding Access Rule or App Rule, the total egress traffic on the interface is limited to the amount specified in the **Enable Interface Ingress Bandwidth Limitation (kbps)** field.

When neither option is selected, no bandwidth limitation is set at the interface level, but egress traffic can still be shaped using other options.

6 In the **Maximum Interface Ingress Bandwidth (Kbps)** field(s), enter the total bandwidth available for all ingress traffic in Kbps. The default is **384.000000** Kbps.

7 Click **OK**.
Configuring Global BWM in an Access Rule

IMPORTANT: Global BWM must be enabled on Security Configuration | Firewall Settings > Bandwidth Management first, as described in Configuring Bandwidth Management.

You can configure BWM in each Access Rule. This method configures the direction in which to apply BWM and sets the priority queue.

IMPORTANT: Before you can configure any priorities in an Access Rule, you must first enable the priorities that you want to use on the Security Configuration | Firewall Settings > Bandwidth Management page. Refer to the Firewall Settings > Bandwidth Management page to determine which priorities are enabled. If you select a Bandwidth Priority that is not enabled on the Firewall Settings > Bandwidth Management page, the traffic is automatically mapped to priority 4 Medium. See Configuring Bandwidth Management.

Priorities are listed in the Access Rules dialog Bandwidth Priority table; see BWM priority queues.

To configure Global BWM in an Access Rule:

2. Click the Edit icon for the rule you want to edit. The Edit Rule dialog displays.
3. Click BWM.
4. Select either or both the Enable Egress Bandwidth Management ('Allow' rules only) checkbox and Enable Ingress Bandwidth Management ('Allow' rules only) checkbox. These options are not selected by default.
 a. Select the appropriate bandwidth priority from the Bandwidth Priority drop-down menu. The highest, and default, priority is 0 Realtime. The lowest priority is 7 Lowest.
5. Click OK.

Configuring Global BWM in an Action Object

IMPORTANT: Global BWM must be enabled on Security Configuration | Firewall Settings > Bandwidth Management first, as described in Configuring Bandwidth Management.

If you do not want to use the predefined Global BWM actions or policies, you have the option to create a new one that fits your needs.

To create a new Global BWM action object:

1. Navigate to the Policies | Objects > Action Objects page.
2 Click the Add button at the top of the Action Object table. The Add/Edit Action Object dialog displays.

![Action Object Settings]

3 In the Action Name field, enter a name for the action object.

4 In the Action drop-down menu, select Bandwidth Management to control and monitor application-level bandwidth usage. The options on the dialog change.

![Action Object Settings]

5 To specify BWM by priority, select either or both the Enable Egress Bandwidth Management checkbox and Enable Ingress Bandwidth Management checkbox. These options are not selected by default.

 a Select the appropriate bandwidth priority from the Bandwidth Priority drop-down menu(s). The highest, and default, priority is 0 Realtime. The lowest priority is 7 Lowest.

6 Click OK.

Configuring Application Rules

Configuring BWM in an Application Rule allows you to create policies that regulate bandwidth consumption by specific file types within a protocol, while allowing other file types to use unlimited bandwidth. This enables you to distinguish between desirable and undesirable traffic within the same protocol.

Application Rule BWM supports the following Policy Types:

- SMTP Client
- HTTP client
- HTTP Server
- FTP Client
- FTP Client File Upload
- FTP Client File Download
- FTP Data Transfer
- POP3 Client
- POP3 Server
- Custom Policy
- IPS Content
- App Control Content
- CFS

NOTE: You must first enable BWM before you can configure BWM in an Application Rule.

Before you configure BWM in an App Rule:

1 Enable the priorities you want to use in Security Configuration | Firewall Settings > Bandwidth Management. See Configuring Bandwidth Management.

2 Enable BWM in an Action Object. See the Configuring Global BWM in an Action Object.

3 Configure BWM on the Interface. See the Configuring Global BWM on an Interface.
To configure BWM in an Application Rule:

1. Navigate to the Policies | Rules > Application Control page.

2. Under App Rules Policies, select an action type from the Action Type drop-down menu.

3. Click the Edit icon in the Configure column for the policy you want to configure. The App Control Policy Settings dialog displays.

4. In the Action Object drop-down menu, select the BWM action object that you want.

5. Click OK.
Configuring App Flow Monitor

BWM can also be configured from the Logs > AppFlow Logs page by selecting a service type application or a signature type application and then clicking the Create Rule button. The Bandwidth Management options available there depend on the enabled priority levels in the Global Priority Queue table on the Firewall Settings > Bandwidth Management page. The priority levels enabled by default are High, Medium, and Low.

NOTE: You must have SonicWall Application Visualization enabled before proceeding.

To configure BWM using the App Flow Monitor:

1. Select the INVESTIGATE view.
2. Navigate to the Logs > Appflow Logs page.

3. Check the service-based applications or signature-based applications to which you want to apply global BWM.

 NOTE: General applications cannot be selected. Service-based applications and signature-based applications cannot be mixed in a single rule.

 NOTE: Creating a rule for service-based applications results in creating a firewall access rule, and creating a rule for signature-based applications creates an application control policy.
4 Click Create Rule. The Create Rule dialog displays. There are slight differences between rules for service-based application options and for signature-based application options.

5 Select the Bandwidth Manage radio button.

6 Select a global BWM priority.

7 Click Create Rule. A confirmation dialog displays. There are slight differences between the items created for service-based application options and for signature-based application options.

8 Click OK.

9 To verify that the rule was created, navigate to:

 • Policies | Rules > Access Rules page for service-based applications.
 • Policies | Rules > Advanced Application Control for signature-based applications.

NOTE: For service-based applications, the new rule is identified with a Tack icon in the Comments column and a prefix in Service column of ~services=<service name>. For example, ~services=NTP&t=1306361297.

For signature-based applications, the new rule is identified with a prefix, ~BWM_Global-priority=<priority>=~catname=<app_name> in the Name column and a prefix in the Object column of ~catname=<app_name>.
Advanced Bandwidth Management

Advanced Bandwidth Management enables you to manage specific classes of traffic based on their priority and maximum bandwidth settings. Advanced Bandwidth Management consists of three major components:

- **Classifier** – classifies packets that pass through the firewall into the appropriate traffic class.
- **Estimator** – estimates and calculates the bandwidth used by a traffic class during a time interval to determine if that traffic class has available bandwidth.
- **Scheduler** – schedules traffic for transmission based on the bandwidth status of the traffic class provided by the estimator.

Advanced Bandwidth Management: Basic concepts illustrates the basic concepts of Advanced Bandwidth Management.

Advanced Bandwidth Management: Basic concepts

Bandwidth management configuration is based on policies that specify bandwidth limitations for traffic classes. A complete bandwidth management policy consists of two parts: a classifier and a bandwidth rule.

A **bandwidth rule** specifies the actual parameters, such as priority, guaranteed bandwidth, maximum bandwidth, and per-IP bandwidth management, and is configured in a bandwidth object. Bandwidth rules identify and organize packets into traffic classes by matching specific criteria.

A **classifier** is an access rule or application rule in which a bandwidth object is enabled. Access rules and application rules are configured for specific interfaces or interface zones.

The first step in bandwidth management is that all packets that pass through the SonicOS firewall are assigned a classifier (class tag). The classifiers identify packets as belonging to a particular traffic class. Classified packets are then passed to the BWM engine for policing and shaping. The SonicOS uses two types of classifiers:

- **Access Rules**
- **Application Rules**

A rule that has sub elements is known as a parent rule.

Configuring a bandwidth object: Parameters shows the parameters that are configured in a bandwidth object:
After packets have been tagged with a specific traffic class, the BWM engine gathers them for policing and shaping based on the bandwidth settings that have been defined in a bandwidth object, enabled in an access rule, and attached to application rules.

Classifiers also identify the direction of packets in the traffic flow. Classifiers can be set for either the egress, ingress, or both directions. For Bandwidth Management, the terms ingress and egress are defined as follows:

- **Ingress** – Traffic from initiator to responder in a particular traffic flow.
- **Egress** – Traffic from responder to initiator in a particular traffic flow.

For example, a client behind Interface X0 has a connection to a server which is behind Interface X1. Direction of traffic shows:

- Direction of traffic flow in each direction for client and server
- Direction of traffic on each interface
- Direction indicated by the BWM classifier

Direction of traffic

<table>
<thead>
<tr>
<th>Direction of Traffic Flow</th>
<th>Direction of Interface X0</th>
<th>Direction of Interface X1</th>
<th>BWM Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client to Server</td>
<td>Egress</td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>Server to Client</td>
<td>Ingress</td>
<td>Egress</td>
<td>Ingress</td>
</tr>
</tbody>
</table>

To be compatible with traditional bandwidth management settings in WAN zones, the terms inbound and outbound are still supported to define traffic direction. These terms are only applicable to active WAN zone interfaces.

- **Outbound** – Traffic from LAN\DMZ zone to WAN zone (Egress).
- **Inbound** – Traffic from WAN zone to LAN\DMZ zone (Ingress).

Elemental Bandwidth Settings

Elemental bandwidth settings provide a method of allowing a single BWM rule to apply to the individual elements of that rule. Per-IP Bandwidth Management is an “Elemental” feature that is a sub-option of Bandwidth Object. When Per-IP BWM is enabled, the elemental bandwidth settings are applied to each individual IP under its parent rule.
The Elemental Bandwidth Settings feature enables a bandwidth object to be applied to individual elements under a parent traffic class. Elemental Bandwidth Settings is a sub-option of Firewall > Bandwidth Objects, the parent rule or traffic class. The following table shows the parameters that are configured under Elemental Bandwidth Settings; see SonicWall SonicOS 6.5 Policies.

Elemental Bandwidth settings: Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Per-IP Bandwidth Management</td>
<td>When enabled, the maximum elemental bandwidth setting applies to each IP address under the parent traffic class, which allows the firewall to support time-critical traffic, such as voice and video, effectively.</td>
</tr>
<tr>
<td>Maximum Bandwidth</td>
<td>The maximum elemental bandwidth that can be allocated to an IP address under the parent traffic class. The maximum elemental bandwidth cannot be greater than the maximum bandwidth of its parent class.</td>
</tr>
</tbody>
</table>

When you enable Per-IP Bandwidth Management, each individual IP under its parent rule will be applied to the elemental bandwidth settings.

Zone-Free Bandwidth Management

The zone-free bandwidth management feature enables bandwidth management on all interfaces regardless of their zone assignments. Previously, bandwidth management only applied to these zones:

- LAN/DMZ to WAN/VPN
- WAN/VPN to LAN/DMZ

In SonicOS 6.2 and above, zone-free bandwidth management can be performed across all interfaces regardless of zone.

Zone-free bandwidth management allows you to configure the maximum bandwidth limitation independently, in either the ingress or egress direction, or both, and apply it to any interfaces using Access Rules and Application Rules.

NOTE: Interface bandwidth limitation is only available on physical interfaces. Failover and load balancing configuration does not affect interface bandwidth limitations.

Weighted Fair Queuing

Traditionally, SonicOS bandwidth management distributes traffic to 8 queues based on the priority of the traffic class of the packets. These 8 queues operate with strict priority queuing. Packets with the highest priority are always transmitted first.

Strict priority queuing can cause high priority traffic to monopolize all of the available bandwidth on an interface, and low priority traffic will consequently be stuck in its queue indefinitely. Under strict priority queuing, the scheduler always gives precedence to higher priority queues. This can result in bandwidth starvation to lower priority queues.

Weighted Fair queuing (WFQ) alleviates the problem of bandwidth starvation by servicing packets from each queue in a round robin manner, so that all queues are serviced fairly within a given time interval. High priority queues get more service and lower priority queues get less service. No queue gets all the service because of its high priority, and no queue is left unserviced because of its low priority.

For example, Traffic Class A is configured as Priority 1 with a maximum bandwidth of 400 kbps. Traffic Class B is configured as Priority 3 with a maximum bandwidth of 600 kbps. Both traffic classes are queued to an interface that has a maximum bandwidth of only 500kbps. Both queues will be serviced based on their priority in a round robin manner. So, both queues will be serviced, but Traffic Class A will be transmitted faster than Traffic Class B.
Shaped bandwidth for consecutive sampling intervals shows the shaped bandwidth for each consecutive sampling interval:

<table>
<thead>
<tr>
<th>Sampling Interval</th>
<th>Traffic Class A</th>
<th>Traffic Class B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shaped kbps</td>
<td>Shaped kbps</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
<td>380</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>350</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling Interval</th>
<th>Traffic Class A</th>
<th>Traffic Class B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingress kbps</td>
<td>Shaped kbps</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td>320</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

Configuring Bandwidth Management

- Enabling Advanced Bandwidth Management
- Configuring Bandwidth Policies
- Setting Interface Bandwidth Limitations with Advanced BWM

Enabling Advanced Bandwidth Management

To enable Advanced bandwidth management:

1. On the firewall, go to Security Configuration | Firewall Settings > Bandwidth Management.
2. Set the Bandwidth Management Type option to Advanced.
3. Click Accept.

NOTE: When Advanced BWM is selected, the priorities fields are disabled and cannot be set here. Under Advanced BWM, the priorities are set in bandwidth policies. See Configuring Bandwidth Policies.
Configuring Bandwidth Policies

- Configuring a Bandwidth Object
- Enabling Elemental Bandwidth Management
- Enabling a Bandwidth Object in an Access Rule
- Enabling a Bandwidth Priority in an Access Rule
- Enabling a Bandwidth Object in an Action Object
- Enabling a Bandwidth Priority and Bandwidth Objects in an Action Object

Configuring a Bandwidth Object

To configure a bandwidth object:

1. Navigate to Policies | Objects > Bandwidth Objects.

2. Do one of the following:
 - Click the Add button to create a new Bandwidth Object.
 - Click the Edit icon of the Bandwidth Object you want to change.

 The Bandwidth Object Settings dialog displays.

3. In the Name field, enter a name for this bandwidth object.

4. In the Guaranteed Bandwidth field, enter the amount of bandwidth that this bandwidth object will guarantee to provide for a traffic class (in kbps or Mbps).
 - Specify whether the bandwidth is kbps (default) or Mbps from the drop-down menu.

- Configuring Bandwidth Policies
- Enabling Elemental Bandwidth Management
- Enabling a Bandwidth Object in an Access Rule
- Enabling a Bandwidth Priority in an Access Rule
- Enabling a Bandwidth Object in an Action Object
- Enabling a Bandwidth Priority and Bandwidth Objects in an Action Object

Configuring a Bandwidth Object

To configure a bandwidth object:

1. Navigate to Policies | Objects > Bandwidth Objects.

2. Do one of the following:
 - Click the Add button to create a new Bandwidth Object.
 - Click the Edit icon of the Bandwidth Object you want to change.

 The Bandwidth Object Settings dialog displays.

3. In the Name field, enter a name for this bandwidth object.

4. In the Guaranteed Bandwidth field, enter the amount of bandwidth that this bandwidth object will guarantee to provide for a traffic class (in kbps or Mbps).
 - Specify whether the bandwidth is kbps (default) or Mbps from the drop-down menu.
5 In the **Maximum Bandwidth** field, enter the maximum amount of bandwidth that this bandwidth object will provide for a traffic class.

 ![NOTE: The actual allocated bandwidth may be less than this value when multiple traffic classes compete for a shared bandwidth.

 a Specify whether the bandwidth is **kbps** (default) or **Mbps** from the drop-down menu.

6 In the **Traffic Priority** field, enter the priority that this bandwidth object will provide for a traffic class. The highest, and default, priority is **0 Realtime**. The lowest priority is **7 Lowest**.

 When multiple traffic classes compete for shared bandwidth, classes with the highest priority are given precedence.

7 In the **Violation Action** field, enter the action that this bandwidth object will provide when traffic exceeds the maximum bandwidth setting:

 - **Delay** – Specifies that excess traffic packets are queued and sent when possible.
 - **Drop** – Specifies that excess traffic packets are dropped immediately.

8 In the **Comment** field, enter a text comment or description for this bandwidth object.

9 Click **OK**.

Enabling Elemental Bandwidth Management

Elemental Bandwidth Management enables SonicOS to enforce bandwidth rules and policies on each individual IP that passes through the firewall.

To enable elemental bandwidth management in a bandwidth object:

1 Navigate to **Policies > Objects > Bandwidth Objects**.

2 Click the **Edit** icon of the Bandwidth Object you want to change. The **Bandwidth Object Settings** dialog displays.

 ![Bandwidth Object Settings](image)

3 Click **Elemental**.

 ![Elemental Bandwidth Settings](image)

4 Select the **Enable Per-IP Bandwidth Management** option. This option is not selected by default. When enabled, the maximum elemental bandwidth setting applies to each individual IP under the parent traffic class.
In the **Maximum Bandwidth** field, enter the maximum elemental bandwidth that can be allocated to a protocol under the parent traffic class.

- Specify whether the bandwidth is **kbps** (default) or **Mbps** from the drop-down menu.

5 Click **OK**.

Enabling a Bandwidth Object in an Access Rule

If Advanced BWM is selected, you can enable bandwidth objects (and their configurations) in **Rules > Access Rules**.

To enable a bandwidth object in an Access Rule:

1 Navigate to **Policies | Rules > Access Rules**.

2 Do one of the following:

 - Click the **Add** button to create a new Access Rule. The **Add Rule** dialog displays.
 - Click the **Edit** icon for the appropriate Access Rule. The **Edit Rule** dialog displays.

3 Click **BWM**.

4 To enable a bandwidth object for the egress direction, under **Bandwidth Management**, select the **Enable Egress Bandwidth Management** checkbox.

5 From the **Select a Bandwidth Object** drop-down menu, select the bandwidth object you want for the egress direction.

6 To enable a bandwidth object for the ingress direction, under **Bandwidth Management**, select the **Enable Ingress Bandwidth Management** checkbox.

7 From the **Select a Bandwidth Object** drop-down menu, select the bandwidth object you want for the ingress direction.

8 To enable bandwidth usage tracking, select the **Enable Tracking Bandwidth Usage** option.

9 Click **OK**.

Enabling a Bandwidth Priority in an Access Rule

If **Global BWM BWM** is selected, you can enable bandwidth priority in **Rules > Access Rules**.

To enable bandwidth priority in an Access Rule:

1 Navigate to **Policies | Rules > Access Rules**.

2 Do one of the following:
3 Click BWM.

- To enable a bandwidth object for the egress direction, under Bandwidth Management, select the Enable Egress Bandwidth Management checkbox. This option is not selected by default.
- From the Bandwidth Priority drop-down menu, select the bandwidth priority you want for the egress direction. The highest, and default, priority is 0 Realtime. The lowest priority is 7 Lowest.
- To enable a bandwidth object for the ingress direction, under Bandwidth Management, select the Enable Ingress Bandwidth Management checkbox. This option is not selected by default.
- From the Bandwidth Priority drop-down menu, select the bandwidth priority you want for the ingress direction. The highest, and default, priority is 0 Realtime. The lowest priority is 7 Lowest.
- Click OK.

Enabling a Bandwidth Object in an Action Object

If Advanced BWM is selected, you can enable bandwidth objects (and their configurations) in Rules > Access Rules.

To enable a bandwidth object in an action object:

1 Navigate to Policies | Objects > Action Objects.
2 Create a new action object by clicking on the Add button. The Action Object Settings dialog displays.
3 Enter a name for the action object in the Action Name field.
4 From the Action drop-down menu, select Bandwidth Management, which allows control and monitoring of application-level bandwidth usage. The options on the Action Object Settings dialog change.

![Action Object Settings](image)

5 In the Bandwidth Aggregation Method drop-down menu, select the appropriate bandwidth aggregation method:
 - Per Policy (default)
 - Per Action

6 To enable bandwidth management in the egress direction, select the Enable Egress Bandwidth Management option.
 a From the Bandwidth Object drop-down menu, select the bandwidth object for the egress direction.

7 To enable bandwidth management in the ingress direction, select the Enable Ingress Bandwidth Management option.
 a From the Bandwidth Object drop-down menu, select the bandwidth object for the ingress direction.

8 Optionally, to enable bandwidth usage tracking, select the Enable Tracking Bandwidth Usage option. This option is available only if either or both of the Enable Bandwidth Management options are selected.

9 Click OK.

Enabling a Bandwidth Priority and Bandwidth Objects in an Action Object

If Global BWM BWM is selected, you can specify BWM priority and enable bandwidth objects (and their configurations) in Rules > Access Rules.

To enable bandwidth priority and a bandwidth object in an action object:

1 Navigate to Policies | Objects > Action Objects.

2 Create a new action object by clicking on the Add button. The Action Object Settings dialog displays.

![Action Object Settings](image)

3 Enter a name for the action object in the Action Name field.
4. From the Action drop-down menu, select Bandwidth Management, which allows control and monitoring of application-level bandwidth usage. The options on the Action Object Settings dialog change.

5. To enable bandwidth management in the egress direction, select the Enable Egress Bandwidth Management for priority option.
 a. From the Bandwidth Priority drop-down menu, select the bandwidth object for the egress direction. The highest, and default, priority is 0 Realtime. The lowest priority is 7 Lowest.

6. To enable bandwidth management in the ingress direction, select the Enable Ingress Bandwidth Management for priority option.
 a. From the Bandwidth Priority drop-down menu, select the bandwidth object for the ingress direction. The highest, and default, priority is 0 Realtime. The lowest priority is 7 Lowest.

7. Click OK.

Setting Interface Bandwidth Limitations with Advanced BWM

To set the bandwidth limitations for an interface:
1. Navigate to System Setup | Network > Interfaces.
2. Click the Edit icon for the appropriate interface. The Edit Interface dialog displays.
3. Click Advanced.
4 Scroll to the Bandwidth Management section.

5 Select the Enable Interface Egress Bandwidth Limitation option. This option is not selected by default. When this option is:
 - Selected, the maximum available egress BWM is defined, but as advanced BWM is policy based, the limitation is not enforced unless there is a corresponding Access Rule or App Rule.
 - Not selected, no bandwidth limitation is set at the interface level, but egress traffic can still be shaped using other options.
 a In the Maximum Interface Egress Bandwidth (kbps) field, enter the maximum egress bandwidth for the interface (in kilobytes per second). The default is 384.000000 Kbps.

6 Select the Enable Interface Ingress Bandwidth Limitation option. This option is not selected by default. For information on using this option, see Step 5.

7 Click OK.

Setting Interface Bandwidth Limitations with Global BWM

To set the bandwidth limitations for an interface:

1 Navigate to System Setup | Network > Interfaces.
2 Click the Edit icon for the appropriate interface. The Edit Interface dialog displays.
3 Click Advanced.

4 Scroll to the Bandwidth Management section.

5 Select the Enable Interface Egress Bandwidth Limitation option. This option is not selected by default. When this option is:
 - Selected, the maximum available egress BWM is defined, but as advanced BWM is policy based, the limitation is not enforced unless there is a corresponding Access Rule or App Rule.
 - Not selected, no bandwidth limitation is set at the interface level, but egress traffic can still be shaped using other options.

a. In the Maximum Interface Egress Bandwidth (kbps) field, enter the maximum egress bandwidth for the interface (in kilobytes per second). The default is 384.000000 Kbps.

6 Select the Enable Interface Ingress Bandwidth Limitation option. This option is not selected by default. This option is not selected by default. For information on using this option, see Step 5.

7 Click OK.
Upgrading to Advanced Bandwidth Management

Advanced Bandwidth Management uses Bandwidth Objects as the configuration method. Bandwidth objects are configured under Objects > Bandwidth Objects, and can then be enabled in Rules > Access Rules.

The Advanced Bandwidth Upgrade feature automatically converts all active, valid, traditional BWM configurations to the Bandwidth Objects design model.

In traditional BWM configuration, the BWM engine only affects traffic when it is transmitted through the primary WAN interface or the active load balancing WAN interface. Traffic that does not pass through these interfaces, is not subject to bandwidth management regardless of the Access Rule or App Rule settings.

Under Advanced Bandwidth Management, the BWM engine can enforce Bandwidth Management settings on any interface.

During the Advanced Bandwidth Management Upgrade process, SonicOS translates traditional BWM settings into a default Bandwidth Object and links it to the original classifier rule (Access Rule or App Rule). The auto-generated default Bandwidth Object inherits all the BWM parameters for both the Ingress and Egress directions.

The two following graphics show the traditional BWM settings. The graphic that follows them shows the new Bandwidth Objects that are automatically generated during the Advanced Bandwidth Management Upgrade process.

Traditional Access Rule settings shows the traditional Access Rule settings from the Rules > Access Rules > Configure dialog.

Traditional Access Rule settings

<table>
<thead>
<tr>
<th>General</th>
<th>Advanced</th>
<th>QoS</th>
<th>Ethernet BWM</th>
</tr>
</thead>
</table>

Ethernet Bandwidth Management

- **Enable Outbound Bandwidth Management (allow rules only)**
 - Guaranteed Bandwidth: 10000 %%
 - Maximum Bandwidth: 50000 %%
 - Bandwidth Priority: 0 Realtime

- **Enable Inbound Bandwidth Management (allow rules only)**
 - Guaranteed Bandwidth: 20000 %%
 - Maximum Bandwidth: 80000 %%
 - Bandwidth Priority: 0 Realtime

- **Enable Tracking Bandwidth Usage**

Notes: BWM Type: WRT. To change go to Firewall Settings > BWM
Traditional Action Object settings shows the traditional Action Object settings from the Firewall > Action Object > Configure dialog.

Traditional Action Object settings

- **Bandwidth Aggregation Method:** Per Policy
- **Enable Outbound Bandwidth Management**
 - **Guaranteed Bandwidth:** 0.000.000 %
 - **Maximum Bandwidth:** 20.000.000 %
 - **Bandwidth Priority:** High
- **Enable Inbound Bandwidth Management**
 - **Guaranteed Bandwidth:** 10.000.000 %
 - **Maximum Bandwidth:** 80.000.000 %
 - **Bandwidth Priority:** Medium High
- **Enable Tracking Bandwidth Usage**

Note: BWM Type: WAN. To change go to Firewall Settings > BWM

Four automatically generated Bandwidth Objects

Four automatically generated Bandwidth Objects shows the four new Bandwidth Objects that are automatically generated during the Advanced Bandwidth Management Upgrade process. These settings can be viewed on the Firewall > Bandwidth Objects page.

Bandwidth Objects

<table>
<thead>
<tr>
<th>Name</th>
<th>Guaranteed</th>
<th>Maximum</th>
<th>Priority</th>
<th>Violation Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Outbound Object - Access Rule (LAN-WAN)</td>
<td>100 Kbps</td>
<td>500 Kbps</td>
<td>0</td>
<td>Delay</td>
</tr>
<tr>
<td>Auto Inbound Object - Access Rule (LAN-WAN)</td>
<td>100 Kbps</td>
<td>400 Kbps</td>
<td>1</td>
<td>Delay</td>
</tr>
<tr>
<td>Auto Outbound Object - FTP (BWM)</td>
<td>60 Kbps</td>
<td>200 Kbps</td>
<td>2</td>
<td>Delay</td>
</tr>
<tr>
<td>Auto Inbound Object - FTP (BWM)</td>
<td>50 Kbps</td>
<td>300 Kbps</td>
<td>3</td>
<td>Delay</td>
</tr>
</tbody>
</table>
Configuring Flood Protection

NOTE: Control Plane flood protection is located on the Firewall Settings > Advanced Settings page.

![TCP, UDP, ICMP settings](image)

TCP Settings
- Enforce strict TCP compliance with RFC 793 and RFC 1122
- Enable TCP handshake enforcement
- Enable TCP checksum enforcement
- Drop TCP SYN packet with data
- Enable TCP handshake timeout
 - TCP Handshake Timeout (seconds): 30
- Default TCP Connection Timeout (minutes): 15
- Maximum Segment Lifetime (seconds): 8
- Enable Half Open TCP Connections Threshold
 - Maximum Half Open TCP Connections: 824960

Layer 3 SYN Flood Protection - SYN Proxy
- SYN Flood Protection Mode: Watch and report possible SYN floods
- SYN Attack Threshold:
 - Suggested value calculated from gathered statistics: 300
 - Attack threshold (incomplete connection attempts / second): 300
- SYN Proxy options:
 - All LAN/DMZ servers support the TCP SACK option
 - Limit MSS sent to WAN clients (when connections are provided)
 - Maximum TCP MSS sent to WAN clients: 1460
 - Always log SYN packets received

TIP: You must click Accept to activate any settings you select.

The Firewall Settings > Flood Protection page lets you:

- Manage:
 - TCP (Transmission Control Protocol) traffic settings such as Layer 2/Layer3 flood protection, WAN DDOS protection
 - UDP (User Datagram Protocol) flood protection
 - ICMP (Internet Control Message Protocol) or ICMPv6 flood protection.
• View statistics on traffic through the security appliance:
 • TCP traffic
 • UDP traffic
 • ICMP or ICMPv6 traffic

SonicOS defends against UDP/ICMP flood attacks by monitoring IPv6 UDP/ICMP traffic flows to defined destinations. UDP/ICMP packets to a specified destination are dropped if one or more sources exceeds a configured threshold.

Topics:
 • TCP View
 • UDP View
 • ICMP View

TCP View

Topics:
 • TCP Settings
 • Layer 3 SYN Flood Protection - SYN Proxy View
 • Configuring Layer 3 SYN Flood Protection
 • Configuring Layer 2 SYN/RST/FIN/TCP Flood Protection – MAC Blacklisting
 • WAN DDOS Protection (Non-TCP Floods)

TCP Settings

- Enforce strict TCP compliance with RFC 793 and RFC 1122 – Ensures strict compliance with several TCP timeout rules. This setting maximizes TCP security, but it may cause problems with the Window Scaling feature for Windows Vista users. This option is not selected by default.
Enable TCP handshake enforcement – Requires a successful three-way TCP handshake for all TCP connections. This option, available only if the Enforce strict TCP compliance with RFC 793 and RFC 1122, is not selected by default.

Enable TCP checksum enforcement – If an invalid TCP checksum is calculated, the packet is dropped. This option is not selected by default.

Enable TCP handshake timeout – Enforces the timeout period (in seconds) for a three-way TCP handshake to complete its connection. If the three-way TCP handshake does not complete in the timeout period, it is dropped. This option is selected by default.

TCP Handshake Timeout (seconds): The maximum time a TCP handshake has to complete the connection. The default is **30** seconds.

Default TCP Connection Timeout – The default time assigned to Access Rules for TCP traffic. If a TCP session is active for a period in excess of this setting, the TCP connection is cleared by the firewall. The default value is **15** minutes, the minimum value is **1** minute, and the maximum value is **999** minutes.

NOTE: Setting excessively long connection time-outs slows the reclamation of stale resources, and in extreme cases, could lead to exhaustion of the connection cache.

Maximum Segment Lifetime (seconds) – Determines the number of seconds that any TCP packet is valid before it expires. This setting is also used to determine the amount of time (calculated as twice the Maximum Segment Lifetime, or 2MSL) that an actively closed TCP connection remains in the TIME_WAIT state to ensure that the proper FIN / ACK exchange has occurred to cleanly close the TCP connection. The default value is **8** seconds, the minimum value is **1** second, and the maximum value is **60** seconds.

Enable Half Open TCP Connections Threshold – Denies new TCP connections if the high-water mark of TCP half-open connections has been reached. By default, the half-open TCP connection is not monitored, so this option is not selected by default.

Maximum Half Open TCP Connections – Specifies the maximum number of half-open TCP connections. The default maximum is half the number of maximum connection caches.

Layer 3 SYN Flood Protection - SYN Proxy View

Topics:

- SYN Flood Protection Methods
- Configuring Layer 3 SYN Flood Protection

SYN Flood Protection Methods

SYN/RST/FIN flood protection helps to protect hosts behind the firewall from Denial of Service (DoS) or Distributed DoS attacks that attempt to consume the host’s available resources by creating one of the following attack mechanisms:

- Sending TCP SYN packets, RST packets, or FIN packets with invalid or spoofed IP addresses.
- Creating excessive numbers of half-opened TCP connections.

The following sections detail some SYN flood protection methods:

- SYN Flood Protection Using Stateless Cookies
- Layer-Specific SYN Flood Protection Methods
- Understanding SYN Watchlists
- Understanding a TCP Handshake
SYN Flood Protection Using Stateless Cookies

The method of SYN flood protection employed starting with SonicOS uses stateless SYN Cookies, which increase reliability of SYN Flood detection, and also improves overall resource utilization on the firewall. With stateless SYN Cookies, the firewall does not have to maintain state on half-opened connections. Instead, it uses a cryptographic calculation (rather than randomness) to arrive at SEQr.

Layer-Specific SYN Flood Protection Methods

SonicOS provides several protections against SYN Floods generated from two different environments: trusted (internal) or untrusted (external) networks. Attacks from untrusted WAN networks usually occur on one or more servers protected by the firewall. Attacks from the trusted LAN networks occur as a result of a virus infection inside one or more of the trusted networks, generating attacks on one or more local or remote hosts.

To provide a firewall defense to both attack scenarios, SonicOS provides two separate SYN Flood protection mechanisms on two different layers. Each gathers and displays SYN Flood statistics and generates log messages for significant SYN Flood events.

- **SYN Proxy (Layer 3)** – This mechanism shields servers inside the trusted network from WAN-based SYN flood attacks, using a SYN Proxy implementation to verify the WAN clients before forwarding their connection requests to the protected server. You can enable SYN Proxy only on WAN interfaces.

- **SYN Blacklisting (Layer 2)** – This mechanism blocks specific devices from generating or forwarding SYN flood attacks. You can enable SYN Blacklisting on any interface.

Understanding SYN Watchlists

The internal architecture of both SYN Flood protection mechanisms is based on a single list of Ethernet addresses that are the most active devices sending initial SYN packets to the firewall. This list is called a SYN watchlist. Because this list contains Ethernet addresses, the device tracks all SYN traffic based on the address of the device forwarding the SYN packet, without considering the IP source or destination address.

Each watchlist entry contains a value called a hit count. The hit count value increments when the device receives an initial SYN packet from a corresponding device. The hit count decrements when the TCP three-way handshake completes. The hit count for any particular device generally equals the number of half-open connections pending since the last time the device reset the hit count. The device default for resetting a hit count is once a second.

The thresholds for logging, SYN Proxy, and SYN Blacklisting are all compared to the hit count values when determining if a log message or state change is necessary. When a SYN Flood attack occurs, the number of pending half-open connections from the device forwarding the attacking packets increases substantially because of the spoofed connection attempts. When you set the attack thresholds correctly, normal traffic flow produces few attack warnings, but the same thresholds detect and deflect attacks before they result in serious network degradation.

Understanding a TCP Handshake

A typical TCP handshake (simplified) begins with an initiator sending a TCP SYN packet with a 32-bit sequence (SEQi) number. The responder then sends a SYN/ACK packet acknowledging the received sequence by sending an ACK equal to SEQi+1 and a random, 32-bit sequence number (SEQr). The responder also maintains state awaiting an ACK from the initiator. The initiator’s ACK packet should contain the next sequence (SEQi+1) along with an acknowledgment of the sequence it received from the responder (by sending an ACK equal to SEQr+1).

The exchange looks as follows:

1. Initiator -> SYN (SEQi=0001234567, ACKi=0) -> Responder
2. Initiator <- SYN/ACK (SEQr=3987654321, ACKr=0001234568) <- Responder
3. Initiator -> ACK (SEQi=0001234568, ACKi=3987654322) -> Responder
Because the responder has to maintain state on all half-opened TCP connections, it is possible for memory depletion to occur if SYNs come in faster than they can be processed or cleared by the responder. A half-opened TCP connection did not transition to an established state through the completion of the three-way handshake. When the firewall is between the initiator and the responder, it effectively becomes the responder, brokering, or proxying, the TCP connection to the actual responder (private host) it is protecting.

Configuring Layer 3 SYN Flood Protection

A SYN Flood Protection mode is the level of protection that you can select to defend against half-opened TCP sessions and high-frequency SYN packet transmissions. This feature enables you to set three different levels of SYN Flood Protection.

To configure SYN Flood Protection features:

1. Go to the Layer 3 SYN Flood Protection - SYN Proxy section of the Security Configuration | Firewall Settings > Flood Protection page.

2. From the SYN Flood Protection Mode drop-down menu, select the type of protection mode:
 - **Watch and Report Possible SYN Floods** – Enables the device to monitor SYN traffic on all interfaces on the device and to log suspected SYN flood activity that exceeds a packet count threshold. The feature does not turn on the SYN Proxy on the device so the device forwards the TCP three-way handshake without modification.
 This is the least invasive level of SYN Flood protection. Select this option if your network is not in a high-risk environment.
 - **Proxy WAN Client Connections When Attack is Suspected** – Enables the device to enable the SYN Proxy feature on WAN interfaces when the number of incomplete connection attempts per second surpasses a specified threshold. This method ensures the device continues to process valid traffic during the attack and that performance does not degrade. Proxy mode remains enabled until all WAN SYN flood attacks stop occurring or until the device blacklists all of them using the SYN Blacklisting feature.
 This is the intermediate level of SYN Flood protection. Select this option if your network experiences SYN Flood attacks from internal or external sources.
 - **Always Proxy WAN Client Connections** – Sets the device to always use SYN Proxy. This method blocks all spoofed SYN packets from passing through the device.
 This is an extreme security measure that directs the device to respond to port scans on all TCP ports because the SYN Proxy feature forces the device to respond to all TCP SYN connection attempts. This can degrade performance and can generate a false positive. Select this option only if your network is in a high-risk environment.

3. Select the SYN Attack Threshold configuration options to provide limits for SYN Flood activity before the device drops packets. The device gathers statistics on WAN TCP connections, keeping track of the
maximum and average maximum and incomplete WAN connections per second. Out of these statistics, the device suggests a value for the SYN flood threshold.

- **Suggested value calculated from gathered statistics** – The suggested attack threshold based on WAN TCP connection statistics.
- **Attack Threshold (Incomplete Connection Attempts/Second)** – Enables you to set the threshold for the number of incomplete connection attempts per second before the device drops packets at any value between 5 and 200,000. The default is the Suggested value calculated from gathered statistics.

4 Select the **SYN-Proxy options** to provide more control over the options sent to WAN clients when in SYN Proxy mode.

NOTE: The options in this section are not available if Watch and report possible SYN floods is selected for SYN Flood Protection Mode.

When the device applies a SYN Proxy to a TCP connection, it responds to the initial SYN packet with a manufactured SYN/ACK reply, waiting for the ACK in response before forwarding the connection request to the server. Devices attacking with SYN Flood packets do not respond to the SYN/ACK reply. The firewall identifies them by their lack of this type of response and blocks their spoofed connection attempts. SYN Proxy forces the firewall to manufacture a SYN/ACK response without knowing how the server will respond to the TCP options normally provided on SYN/ACK packets.

- **All LAN/DMZ servers support the TCP SACK option** – Enables SACK (Selective Acknowledgment) where a packet can be dropped and the receiving device indicates which packets it received. This option is not enabled by default. Enable this checkbox only when you know that all servers covered by the firewall access the WAN support the SACK option.
- **Limit MSS sent to WAN clients (when connections are proxied)** – Enables you to enter the maximum MSS (Minimum Segment Size) value. This sets the threshold for the size of TCP segments, preventing a segment that is too large to be sent to the targeted server. For example, if the server is an IPsec gateway, it may need to limit the MSS it received to provide space for IPsec headers when tunneling traffic. The firewall cannot predict the MSS value sent to the server when it responds to the SYN manufactured packet during the proxy sequence. Being able to control the size of a segment, enables you to control the manufactured MSS value sent to WAN clients. This option is not selected by default.

If you specify an override value for the default of 1460, a segment of that size or smaller is sent to the client in the SYN/ACK cookie. Setting this value too low can decrease performance when the SYN Proxy is always enabled. Setting this value too high can break connections if the server responds with a smaller MSS value.

- **Maximum TCP MSS sent to WAN clients.** The value of the MSS. The default is 1460, the minimum value is 32, and the maximum is 1460.

NOTE: When using Proxy WAN client connections, remember to set these options conservatively as they only affect connections when a SYN Flood takes place. This ensures that legitimate connections can proceed during an attack.

- **Always log SYN packets received.** Logs all SYN packets received.

Layer 2 SYN/RST/FIN Flood Protection - MAC Blacklisting

The SYN/RST/FIN Blacklisting feature lists devices that exceeded the SYN, RST, and FIN Blacklist attack threshold. The firewall device drops packets sent from blacklisted devices early in the packet evaluation process, enabling the firewall to handle greater amounts of these packets, providing a defense against attacks originating on local networks while also providing second-tier protection for WAN networks.

Devices cannot occur on the SYN/RST/FIN Blacklist and watchlist simultaneously. With blacklisting enabled, the firewall removes devices exceeding the blacklist threshold from the watchlist and places them on the blacklist.
Conversely, when the firewall removes a device from the blacklist, it places it back on the watchlist. Any device whose MAC address has been placed on the blacklist will be removed from it approximately three seconds after the flood emanating from that device has ended.

Configuring Layer 2 SYN/RST/FIN/TCP Flood Protection – MAC Blacklisting

- **Threshold for SYN/RST/FIN flood blacklisting (SYNs / Sec)** – Specifies the maximum number of SYN, RST, FIN, and TCP packets allowed per second. The minimum is 10, the maximum is 800000, and default is 1,000. This value should be larger than the SYN Proxy threshold value because blacklisting attempts to thwart more vigorous local attacks or severe attacks from a WAN network.

 NOTE: This option cannot be modified unless Enable SYN/RST/FIN/TCP flood blacklisting on all interfaces is enabled.

- **Enable SYN/RST/FIN/TCP flood blacklisting on all interfaces** – Enables the blacklisting feature on all interfaces on the firewall. This option is not selected by default. When it is selected, these options become available:
 - **Never blacklist WAN machines** – Ensures that systems on the WAN are never added to the SYN Blacklist. This option is recommended as leaving it cleared may interrupt traffic to and from the firewall’s WAN ports. This option is not selected by default.
 - **Always allow SonicWall management traffic** – Causes IP traffic from a blacklisted device targeting the firewall’s WAN IP addresses to not be filtered. This allows management traffic and routing protocols to maintain connectivity through a blacklisted device. This option is not selected by default.

WAN DDOS Protection (Non-TCP Floods)

WAN DDOS Protection provides protection against non-TCP DDOS attacks and should be used in combination with SYN-Flood Protection if TCP SYN-flood attacks are a concern. This feature is not intended to protect a well-known server of non-TCP services on the internet (such as a central DNS server), but is intended to protect LAN and DMZ networks for which the majority of non-TCP traffic is initiated from the LAN/DMZ side, possibly in combination with limited WAN-initiated traffic.

When WAN DDOS Protection is enabled, it tracks the rate of non-TCP packets arriving on WAN interfaces. When the rate of non-TCP packets exceeds the specified threshold, non-TCP packets arriving on WAN interfaces will be filtered. A non-TCP packet will only be forwarded when at least one of the following conditions is true:

- the source IP address is on the Allow list
- the packet is SonicWall management traffic, and **Always allow SonicWall management traffic** is selected
- the packet is VPN Negotiation traffic (IKE) and **Always allow VPN negotiation traffic** is selected
- the packet is an ESP packet and matches the SPI of a tunnel terminating on the network security appliance
- the packet is the nth packet matching the value specified for **WAN DDOS Filter Bypass Rate (every n packets)**

If none of these conditions are met, the packet is dropped early in packet processing.
You can configure the WAN DDOS Protection (Non-TCP Floods) settings on the MANAGE | Security Configuration | Firewall Settings > Flood Protection page.

Threshold for WAN DDOS protection (Non-TCP Packets / Sec)

Threshold for WAN DDOS protection specifies the maximum number of non-TCP packets allowed per second to be sent to a host, range, or subnet. Exceeding this threshold triggers WAN DDOS flood protection. The default number of non-TCP packets is 1000. The minimum number is 0; the maximum number is 1000000.

WAN DDOS Filter Bypass Rate (every n packets)

When the configured Filter Bypass Rate is non-zero, a non-TCP packet that would normally be dropped by WAN DDOS Protection will instead be passed to the LAN/DMZ network. The bypass rate allows a potential attack to be throttled, but not completely blocked. Allowing some packets to pass through even though their sources are not on the Allow List can provide a mechanism by which legitimate WAN side hosts may get a packet through to the LAN/DMZ side, and a response would populate the Allow List so the following non-TCP packets from the legitimate WAN side host would always be forwarded from that point on.

The default value of the Filter Bypass Rate is zero, so the user must modify this value before the heuristic can be attempted. When the Filter Bypass Rate is non-zero, the value determines what proportion of packets are forwarded regardless of the Allow List contents. For example, if the value was set to two, every other packet would be forwarded to the LAN/DMZ networks (assuming they passed policy, etc). If the value were 100, every 100th packet would be forwarded, and so on. The appropriate value is dependent on the capabilities of the potential LAN side target machines and the nature of the legitimate non-TCP traffic patterns in the customer's network.

WAN DDOS Allow List Timeout

If a non-zero Allow List Timeout is defined by the user, entries in the Allow List will expire in the configured time. If the Allow List Timeout is zero, they never expire. In either case, the least-recently-used entry in a particular hash-bucket may be replaced by a new entry if no unused entry is available in the list.

Enable DDOS protection on WAN interfaces

Selecting Enable DDOS protection on WAN interfaces (it is disabled by default) allows you to set two additional options:

- Always allow SonicWall management traffic
- Always allow VPN negotiation traffic

Always allow SonicWall management traffic

When Always allow SonicWall management traffic is enabled (it is disabled by default), traffic needed to manage your SonicWall appliances is allowed to pass through your WAN gateways even when the appliance is under a non-TCP DDOS attack.
Always allow VPN negotiation traffic

When **Always allow VPN Negotiation traffic** is enabled (it is disabled by default), a VPN can be negotiated even when the appliance is under a non-TCP DDOS attack.

TCP Traffic Statistics

<table>
<thead>
<tr>
<th>This statistic</th>
<th>Is incremented/displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections Opened</td>
<td>When a TCP connection initiator sends a SYN, or a TCP connection responder receives a SYN.</td>
</tr>
<tr>
<td>Connections Closed</td>
<td>When a TCP connection is closed when both the initiator and the responder have sent a FIN and received an ACK.</td>
</tr>
<tr>
<td>Connections Refused</td>
<td>When a RST is encountered, and the responder is in a SYN_RCVD state.</td>
</tr>
<tr>
<td>Connections Aborted</td>
<td>When a RST is encountered, and the responder is in some state other than SYN_RCVD.</td>
</tr>
<tr>
<td>Connection Handshake Error</td>
<td>When a handshake error is encountered.</td>
</tr>
<tr>
<td>Connection Handshake Timeouts</td>
<td>When a handshake times out.</td>
</tr>
<tr>
<td>Total TCP Packets</td>
<td>With every processed TCP packet.</td>
</tr>
<tr>
<td>Validated Packets Passed</td>
<td>When:</td>
</tr>
<tr>
<td></td>
<td>• A TCP packet passes checksum validation (while TCP checksum validation is enabled).</td>
</tr>
<tr>
<td></td>
<td>• A valid SYN packet is encountered (while SYN Flood protection is enabled).</td>
</tr>
<tr>
<td></td>
<td>• A SYN Cookie is successfully validated on a packet with the ACK flag set</td>
</tr>
<tr>
<td></td>
<td>(while SYN Flood protection is enabled).</td>
</tr>
</tbody>
</table>
TCP Traffic Statistics

<table>
<thead>
<tr>
<th>This statistic</th>
<th>Is incremented/displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malformed Packets Dropped</td>
<td>When:</td>
</tr>
<tr>
<td></td>
<td>• TCP checksum fails validation (while TCP checksum validation is enabled).</td>
</tr>
<tr>
<td></td>
<td>• The TCP SACK Permitted option is encountered, but the calculated option length is incorrect.</td>
</tr>
<tr>
<td></td>
<td>• The TCP MSS (Maximum Segment Size) option is encountered, but the calculated option length is incorrect.</td>
</tr>
<tr>
<td></td>
<td>• The TCP SACK option data is calculated to be either less than the minimum of 6 bytes, or modulo incongruent to the block size of 4 bytes.</td>
</tr>
<tr>
<td></td>
<td>• The TCP option length is determined to be invalid.</td>
</tr>
<tr>
<td></td>
<td>• The TCP header length is calculated to be less than the minimum of 20 bytes.</td>
</tr>
<tr>
<td></td>
<td>• The TCP header length is calculated to be greater than the packet’s data length.</td>
</tr>
<tr>
<td>Invalid Flag Packets Dropped</td>
<td>When a:</td>
</tr>
<tr>
<td></td>
<td>• Non-SYN packet is received that cannot be located in the connection-cache (while SYN Flood protection is disabled).</td>
</tr>
<tr>
<td></td>
<td>• Packet with flags other than SYN, RST+ACK ,or SYN+ACK is received during session establishment (while SYN Flood protection is enabled).</td>
</tr>
<tr>
<td></td>
<td>• TCP XMAS Scan is logged if the packet has FIN, URG, and PSH flags set.</td>
</tr>
<tr>
<td></td>
<td>• TCP FIN Scan is logged if the packet has the FIN flag set.</td>
</tr>
<tr>
<td></td>
<td>• TCP Null Scan is logged if the packet has no flags set.</td>
</tr>
<tr>
<td></td>
<td>• New TCP connection initiation is attempted with something other than just the SYN flag set.</td>
</tr>
<tr>
<td></td>
<td>• Packet with the SYN flag set is received within an established TCP session.</td>
</tr>
<tr>
<td></td>
<td>• Packet without the ACK flag set is received within an established TCP session.</td>
</tr>
<tr>
<td>Invalid Sequence Packets Dropped</td>
<td>When a:</td>
</tr>
<tr>
<td></td>
<td>• Packet within an established connection is received where the sequence number is less than the connection’s oldest unacknowledged sequence.</td>
</tr>
<tr>
<td></td>
<td>• Packet within an established connection is received where the sequence number is greater than the connection’s oldest unacknowledged sequence + the connection’s last advertised window size.</td>
</tr>
<tr>
<td>Invalid Acknowledgement Packets Dropped</td>
<td>When an invalid acknowledgement packet is dropped.</td>
</tr>
<tr>
<td>Max Incomplete WAN Connections / sec</td>
<td>When a:</td>
</tr>
<tr>
<td></td>
<td>• Packet is received with the ACK flag set, and with neither the RST or SYN flags set, but the SYN Cookie is determined to be invalid (while SYN Flood protection is enabled).</td>
</tr>
<tr>
<td></td>
<td>• Packet’s ACK value (adjusted by the sequence number randomization offset) is less than the connection’s oldest unacknowledged sequence number.</td>
</tr>
<tr>
<td></td>
<td>• Packet’s ACK value (adjusted by the sequence number randomization offset) is greater than the connection’s next expected sequence number.</td>
</tr>
<tr>
<td>Average Incomplete WAN Connections / sec</td>
<td>The average number of incomplete WAN connections per second.</td>
</tr>
<tr>
<td>SYN Floods In Progress</td>
<td>When a SYN flood is detected.</td>
</tr>
<tr>
<td>RST Floods In Progress</td>
<td>When a RST flood is detected.</td>
</tr>
<tr>
<td>FIN Floods In Progress</td>
<td>When a FIN flood is detected.</td>
</tr>
<tr>
<td>TCP Floods In Progress</td>
<td>When a TCP flood is detected.</td>
</tr>
<tr>
<td>Total SYN, RST, FIN or TCP Floods Detected</td>
<td>The total number of floods (SYN, RST, FIN, and TCP) detected.</td>
</tr>
</tbody>
</table>
TCP Traffic Statistics

<table>
<thead>
<tr>
<th>This statistic</th>
<th>Is incremented/displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Connection SYN-Proxy State (WAN only)</td>
<td>For WAN only, whether the TCP connection SYN-proxy is enabled.</td>
</tr>
<tr>
<td>Current SYN-Blacklisted Machines</td>
<td>When a device is listed on the SYN blacklist.</td>
</tr>
<tr>
<td>Current RST-Blacklisted Machines</td>
<td>When a device is listed on the RST blacklist.</td>
</tr>
<tr>
<td>Current FIN-Blacklisted Machines</td>
<td>When a device is listed on the FIN blacklist.</td>
</tr>
<tr>
<td>Current TCP-Blacklisted Machines</td>
<td>When a device is listed on the TCP blacklist.</td>
</tr>
<tr>
<td>Total SYN-Blacklisting Events</td>
<td>When a SYN blacklisting event is detected.</td>
</tr>
<tr>
<td>Total RST-Blacklisting Events</td>
<td>When a RST blacklisting event is detected.</td>
</tr>
<tr>
<td>Total FIN-Blacklisting Events</td>
<td>When a FIN blacklisting event is detected.</td>
</tr>
<tr>
<td>Total TCP-Blacklisting Events</td>
<td>When a TCP blacklisting event is detected.</td>
</tr>
<tr>
<td>Total SYN Blacklist Packets Rejected</td>
<td>The total number of SYN packets rejected by SYN blacklisting.</td>
</tr>
<tr>
<td>Total RST Blacklist Packets Rejected</td>
<td>The total number of RST packets rejected by SYN blacklisting.</td>
</tr>
<tr>
<td>Total FIN Blacklist Packets Rejected</td>
<td>The total number of FIN packets rejected by SYN blacklisting.</td>
</tr>
<tr>
<td>Total TCP Blacklist Packets Rejected</td>
<td>The total number of TCP packets rejected by SYN blacklisting.</td>
</tr>
<tr>
<td>Invalid SYN Flood Cookies Received</td>
<td>When a SNY flood cookie is received.</td>
</tr>
<tr>
<td>WAN DDOS Filter State</td>
<td>Whether the DDOS filter is enabled or disabled.</td>
</tr>
<tr>
<td>WAN DDOS Filter – Packets Rejected</td>
<td>When a WAN DDOS Filter rejects a packet.</td>
</tr>
<tr>
<td>WAN DDOS Filter – Packets Leaked</td>
<td></td>
</tr>
<tr>
<td>WAN DDOS Filter – Allow List Count</td>
<td></td>
</tr>
</tbody>
</table>
UDP Settings

- **Default UDP Connection Timeout (seconds)** - The number of seconds of idle time you want to allow before UDP connections time out. This value is overridden by the UDP Connection timeout you set for individual rules.

UDP Flood Protection

UDP Flood Attacks are a type of denial-of-service (DoS) attack. They are initiated by sending a large number of UDP packets to random ports on a remote host. As a result, the victimized system’s resources are consumed with handling the attacking packets, which eventually causes the system to be unreachable by other clients.
SonicWall UDP Flood Protection defends against these attacks by using a “watch and block” method. The appliance monitors UDP traffic to a specified destination. If the rate of UDP packets per second exceeds the allowed threshold for a specified duration of time, the appliance drops subsequent UDP packets to protect against a flood attack.

UDP packets that are DNS query or responses to or from a DNS server configured by the appliance are allowed to pass, regardless of the state of UDP Flood Protection.

The following settings configure UDP Flood Protection:

- **Enable UDP Flood Protection** – Enables UDP Flood Protection. This option is not selected by default.

 NOTE: Enable UDP Flood Protection must be enabled to activate the other UDP Flood Protection options.

- **UDP Flood Attack Threshold (UDP Packets / Sec)** – The maximum number of UDP packets allowed per second to be sent to a host, range, or subnet that triggers UDP Flood Protection. Exceeding this threshold triggers ICMP Flood Protection. The minimum value is 50, the maximum value is 1000000, and the default value is 1000.

- **UDP Flood Attack Blocking Time (Sec)** – After the appliance detects the rate of UDP packets exceeding the attack threshold for this duration of time, UDP Flood Protection is activated and the appliance begins dropping subsequent UDP packets. The minimum time is 1 second, the maximum time is 120 seconds, and the default time is 2 seconds.

- **UDP Flood Attack Protected Destination List** – The destination address object or address group that will be protected from UDP Flood Attack. The default value is Any.

 TIP: Select Any to apply the Attack Threshold to the sum of UDP packets passing through the firewall.

UDP Traffic Statistics

<table>
<thead>
<tr>
<th>UDP Traffic Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections Opened</td>
<td>124</td>
</tr>
<tr>
<td>Connections Closed</td>
<td>124</td>
</tr>
<tr>
<td>Total UDP Packets</td>
<td>1455</td>
</tr>
<tr>
<td>Validated Packets Passed</td>
<td>1455</td>
</tr>
<tr>
<td>Unformated Packets Dropped</td>
<td>0</td>
</tr>
<tr>
<td>UDP Floods In Progress</td>
<td>0</td>
</tr>
<tr>
<td>Total UDP Floods Detected</td>
<td>0</td>
</tr>
<tr>
<td>Total UDP Floods Rejected</td>
<td>0</td>
</tr>
</tbody>
</table>

The UDP Traffic Statistics table provides statistics as shown in UDP Traffic Statistics. To clear and restart the statistics displayed by a table, click the Clear Stats icon for the table.

UDP Traffic Statistics

<table>
<thead>
<tr>
<th>This statistic</th>
<th>Is incremented/displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections Opened</td>
<td>When a connection is opened.</td>
</tr>
<tr>
<td>Connections Closed</td>
<td>When a connection is closed.</td>
</tr>
<tr>
<td>Total UDP Packets</td>
<td>With every processed UDP packet.</td>
</tr>
<tr>
<td>Validated Packets Passed</td>
<td>When a UDP packet passes checksum validation (while UDP checksum validation is enabled).</td>
</tr>
</tbody>
</table>
UDP Traffic Statistics

<table>
<thead>
<tr>
<th>This statistic</th>
<th>Is incremented/displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malformed Packets Dropped</td>
<td>When:</td>
</tr>
<tr>
<td></td>
<td>• UDP checksum fails validation (while UDP checksum validation is enabled).</td>
</tr>
<tr>
<td></td>
<td>• The UDP header length is calculated to be greater than the packet’s data length.</td>
</tr>
<tr>
<td>UDP Floods In Progress</td>
<td>The number of individual forwarding devices currently exceeding the UDP Flood Attack Threshold.</td>
</tr>
<tr>
<td>Total UDP Floods Detected</td>
<td>The total number of events in which a forwarding device has exceeded the UDP Flood Attack Threshold.</td>
</tr>
<tr>
<td>Total UDP Flood Packets Rejected</td>
<td>The total number of packets dropped because of UDP Flood Attack detection. Clicking on the Statistics icon displays a pop-up dialog showing the most recent rejected packets:</td>
</tr>
</tbody>
</table>

ICMP View

![ICMP View Diagram](image.png)

Topics:
- View IP Version
- ICMP/ICMPv6 Flood Protection
- ICMP/ICMPv6 Traffic Statistics
View IP Version

The View IP Version radio buttons allow you to specify the IP version: IPv4 or IPv6. If you select:

- IPv4, the headings and options display ICMP.
- IPv6, the headings and options display ICMPv6.

ICMP/ICMPv6 Flood Protection

ICMP Flood Protection functions identically to UDP Flood Protection, except it monitors for ICMP/ICMPv6 Flood Attacks. The only difference is that DNS queries are not allowed to bypass ICMP Flood Protection.

The following settings configure ICMP Flood Protection:

- **Enable ICMP Flood Protection** – Enables ICMP Flood Protection.

 | NOTE: Enable ICMP Flood Protection must be enabled to activate the other ICMP Flood Protection options.

- **ICMP Flood Attack Threshold (ICMP Packets / Sec)** – The maximum number of ICMP packets allowed per second to be sent to a host, range, or subnet. Exceeding this threshold triggers ICMP Flood Protection. The minimum number is 10, the maximum number is 100,000, and the default number is 200.

- **ICMP Flood Attack Blocking Time (Sec)** – After the appliance detects the rate of ICMP packets exceeding the attack threshold for this duration of time, ICMP Flood Protection is activated, and the appliance will begin dropping subsequent ICMP packets. The minimum time is 1 second, the maximum time is 120 seconds, and the default time is 2 seconds.

- **ICMP Flood Attack Protected Destination List** – The destination address object or address group that will be protected from ICMP Flood Attack. The default value is Any.

 | TIP: Select Any to apply the Attack Threshold to the sum of ICMP packets passing through the firewall.

ICMP/ICMPv6 Traffic Statistics

The ICMP Traffic Statistics table provides statistics as shown in ICMP/ICMPv6 Traffic Statistics. To clear and restart the statistics displayed by a table, click the Clear Stats icon for the table.
ICMP/ICMPv6 Traffic Statistics

<table>
<thead>
<tr>
<th>This statistic</th>
<th>Is incremented/displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections Opened</td>
<td>When a connection is opened.</td>
</tr>
<tr>
<td>Connections Closed</td>
<td>When a connection is closed.</td>
</tr>
<tr>
<td>Total UDP Packets</td>
<td>With every processed ICMP/ICMPv6 packet.</td>
</tr>
<tr>
<td>Validated Packets Passed</td>
<td>When a ICMP/ICMPv6 packet passes checksum validation (while ICMP/ICMPv6 checksum validation is enabled).</td>
</tr>
<tr>
<td>Malformed Packets Dropped</td>
<td>When:</td>
</tr>
<tr>
<td></td>
<td>• ICMP/ICMPv6 checksum fails validation (while ICMP/ICMPv6 checksum validation is enabled).</td>
</tr>
<tr>
<td></td>
<td>• The ICMP/ICMPv6 header length is calculated to be greater than the packet’s data length.</td>
</tr>
<tr>
<td>ICMP/ICMPv6 Floods In Progress</td>
<td>The number of individual forwarding devices currently exceeding the ICMP/ICMPv6 Flood Attack Threshold.</td>
</tr>
<tr>
<td>Total ICMP/ICMPv6 Floods Detected</td>
<td>The total number of events in which a forwarding device has exceeded the ICMP/ICMPv6 Flood Attack Threshold.</td>
</tr>
<tr>
<td>Total ICMP/ICMPv6 Flood Packets Rejected</td>
<td>The total number of packets dropped because of ICMP/ICMPv6 Flood Attack detection. Clicking on the Statistics icon displays a pop-up dialog showing the most recent rejected packets:</td>
</tr>
</tbody>
</table>
Configuring Firewall Multicast Settings

IP multicasting is a method for sending one Internet Protocol (IP) packet simultaneously to multiple hosts. Multicast is suited to the rapidly growing segment of Internet traffic - multimedia presentations and video conferencing. For example, a single host transmitting an audio or video stream and ten hosts that want to receive this stream. In multicasting, the sending host transmits a single IP packet with a specific multicast address, and the 10 hosts simply need to be configured to listen for packets targeted to that address to receive the transmission. Multicasting is a point-to-multipoint IP communication mechanism that operates in a connectionless mode - hosts receive multicast transmissions by “tuning in” to them, a process similar to tuning in to a radio.

The Security Configuration | Firewall Settings > Multicast page allows you to manage multicast traffic on the firewall.

Topics:
- Multicast Snooping
- Multicast Policies
- IGMP State Table
- Enabling Multicast on LAN-Dedicated Interfaces
- Enabling Multicast Through a VPN
Multicast Snooping

This section provides configuration tasks for Multicast Snooping.

- **Enable Multicast** - Select this checkbox to support multicast traffic. This checkbox is disabled by default.
- **Require IGMP Membership reports for multicast data forwarding** - Select this checkbox to improve performance by regulating multicast data to be forwarded to only interfaces joined into a multicast group address using IGMP. This checkbox is enabled by default.
- **Multicast state table entry timeout (minutes)** - This field has a default of 5. The value range for this field is 5 to 60 (minutes). Update the default timer value of 5 in the following conditions:
 - You suspect membership queries or reports are being lost on the network.
 - You want to reduce the IGMP traffic on the network and currently have a large number of multicast groups or clients. This is a condition where you do not have a router to route traffic.
 - You want to synchronize the timing with an IGMP router.

Multicast Policies

This section provides configuration tasks for Multicast Policies.

- **Enable reception of all multicast addresses** - This radio button is not enabled by default. Select this radio button to receive all (class D) multicast addresses.

 NOTE: Receiving all multicast addresses may cause your network to experience performance degradation.

- **Enable reception for the following multicast addresses** - This radio button is enabled by default. In the drop-down menu, select Create a new multicast object or Create new multicast group.

 NOTE: Only address objects and groups associated with the MULTICAST zone are available to select. Only addresses from 224.0.0.1 to 239.255.255.255 can be bound to the MULTICAST zone.

 NOTE: You can specify up to 200 total multicast addresses.

To create a multicast address object:

1. Under **Multicast Snooping**, select **Enable Multicast**.
2. Under **Multicast Policies**, in the **Enable reception for the following multicast addresses** drop-down menu, select **Create new multicast address object**. The **Add Address Object** dialog displays.
3 Configure the name of the address object in the Name field.

4 From the Zone Assignment drop-down menu, select MULTICAST.

5 From the Type drop-down menu, select Host, Range, Network, MAC, or FQDN.

6 Depending on your Type selection, the options on the dialog change. If you selected:
 - Host or Network, the IP Address field displays. Enter the IP address of the host or network. The IP address must be in the range for multicast: 224.0.0.0 to 239.255.255.255.
 - Network, the Netmask field displays. Enter the netmask for the network.
 - Range, the Starting IP Address and Ending IP Address fields display. Enter the starting and ending IP address for the address range. The IP addresses must be in the range for multicast: 224.0.0.1 to 239.255.255.255.

7 Click OK.

IGMP State Table

This section provides descriptions of the fields in the IGMP State Table.

- **Multicast Group Address**—Provides the multicast group address the interface is joined to.
- **Interface / VPN Tunnel**—Provides the interface (such as LAN) for the VPN policy.
- **IGMP Version**—Provides the IGMP version (such as V2 or V3).
- **Time Remaining**—
- **Flush**—Provides an icon to flush that particular entry.
- **Flush** and **Flush All** buttons—To flush a specific entry immediately, check the box to the left of the entry and click Flush. Click Flush All to immediately flush all entries.

Enabling Multicast on LAN-Dedicated Interfaces

To enable multicast support on the LAN-dedicated interfaces of your firewall:

1 Go to the Security Configuration | Firewall Settings > Multicast page.
2 Under Multicast Snooping, select Enable Multicast.
3 Under Multicast Policies, select Enable the reception of all multicast addresses.
4 Click Accept.
5 Go to the Network > Interfaces page.
6 Click the Configure button for the LAN interface you want to configure. The Edit Interface dialog displays.
7 Click Advanced.
8 Select Enable Multicast Support.
9 Click OK.

To enable multicast support for address objects over a VPN tunnel:
1 Go to the Security Configuration | Firewall Settings > Multicast page.
2 Under Multicast Snooping, select Enable Multicast.
3 Under Multicast Policy, select Enable the reception for the following multicast addresses.
4 From the drop-down menu, select Create new multicast address object. The Add Address Object dialog appears.

5 In the Name field, enter a name for your multicast address object.
6 From the Zone Assignment drop-down menu, select a zone: DMZ, LAN, MULTICAST, SSLVPN, VPN, WAN, or WLAN.
7 When you select a type from the Type drop-down menu, the other options change, depending on the selection. If you select:
 - Host, enter an IP address in the IP Address field.
 - Range, enter the starting and ending IP addresses in the Starting IP Address and the Ending IP Address.
 - Network, enter the network IP address in the Netmask field and a netmask or prefix length in the Netmask/Prefix Length field.
 - MAC, enter the MAC address in the MAC Address field and select the Multi-homed host checkbox (which is selected by default).
 - FQDN, enter the FQDN hostname in the FQDN Hostname field.
8 Click OK.
9 Go to the VPN > Settings page.
10 In the VPN Policies table, click the Configure icon for the Group VPN policy you want to configure. The VPN Policy dialog displays.
11 Click Advanced.
12 In the Advanced Settings section, select Enable Multicast.
13 Click OK.
Enabling Multicast Through a VPN

To enable multicast across the WAN through a VPN:

1. Enable multicast globally:
 a. Navigate to the Security Configuration | Firewall Settings > Multicast page.
 b. Check the Enable Multicast checkbox.
 c. Click the Accept button.
 d. Repeat Step a through Step c for each interface on all participating security appliances.

2. Enable multicast support on each individual interface that will be participating in the multicast network.
 a. Navigate to the System Setup | Network > Interfaces page
 b. Click the Edit icon of the participating interface. The Edit Interface dialog displays.
 c. Click Advanced.
 d. Select the Enable Multicast Support checkbox.
 e. Click OK.
 f. Repeat Step a through Step e for each participating interface on all participating appliances.

3. Enable multicast on the VPN policies between the security appliances.
 a. Navigate to the Connectivity | VPN > Base Settings page.
 b. Click the Edit icon of a policy in which include multicasting. The VPN Policy dialog displays.
c Click Advanced.

![Advanced Settings](image)

Advanced Settings
- Disable IPv6 Anti-Replay
- Enable Multicast
- Accept Multiple Proposals for Clients
- Enable IKE Mode Configuration

Management via this SA:
Default Gateway:

Client Authentication
- Require authentication of VPN clients by XAUTH
- User group for XAUTH users:
- Allow Unauthenticated VPN Client Access:

NOTE: The default WLAN MULTICAST access rule for IGMP traffic is set to DENY. This will need to be changed to ALLOW on all participating appliances to enable multicast if they have multicast clients on their WLAN zones.

d In the Advanced Settings section, select Enable Multicast.
e Click OK.

4 Verify the tunnels are active between the sites.

5 Start the multicast server application and client applications. As multicast data is sent from the multicast server to the multicast group (224.0.0.0 through 239.255.255.255), the firewall queries its IGMP state table for that group to determine where to deliver that data. Similarly, when the appliance receives that data at the VPN zone, the appliance queries its IGMP State Table to determine where it should deliver the data.

The IGMP State Tables (upon updating) should provide information indicating that there is a multicast client on the X3 interface, and across the vpnMcastServer tunnel for the 224.15.16.17 group.

NOTE: By selecting Enable reception of all multicast addresses, you might see entries other than those you are expecting to see when viewing your IGMP State Table. These are caused by other multicast applications that might be running on your hosts.
Managing Quality of Service

Quality of Service (QoS) refers to a diversity of methods intended to provide predictable network behavior and performance. This sort of predictability is vital to certain types of applications, such as Voice over IP (VoIP), multimedia content, or business-critical applications such as order or credit-card processing. No amount of bandwidth can provide this sort of predictability, because any amount of bandwidth will ultimately be used to its capacity at some point in a network. Only QoS, when configured and implemented correctly, can properly manage traffic, and guarantee the desired levels of network service.

Topics:
- Classification
- Marking
- Conditioning
- 802.1p and DSCP QoS
- Bandwidth Management
- Glossary

Classification

Classification is necessary as a first step so that traffic in need of management can be identified. SonicOS uses Access Rules as the interface to classification of traffic. This provides fine controls using combinations of Address Object, Service Object, and Schedule Object elements, allowing for classification criteria as general as all HTTP traffic and as specific as SSH traffic from hostA to serverB on Wednesdays at 2:12am.

SonicWall network security appliances have the ability to recognize, map, modify, and generate the industry-standard external CoS designators, DSCP and 802.1p (refer to the section 802.1p and DSCP QoS).

Once identified, or classified, it can be managed. Management can be performed internally by SonicOS Bandwidth Management (BWM), which is perfectly effective as long as the network is a fully contained autonomous system. Once external or intermediate elements are introduced, such as foreign network infrastructures with unknown configurations, or other hosts contending for bandwidth (for example, the Internet) the ability to offer guarantees and predictability are diminished. In other words, as long as the endpoints of the network and everything in between are within your management, BWM will work exactly as configured. Once external entities are introduced, the precision and efficacy of BWM configurations can begin to degrade.
But all is not lost. Once SonicOS classifies the traffic, it can tag the traffic to communicate this classification to certain external systems that are capable of abiding by CoS tags; thus they too can participate in providing QoS.

NOTE: Many service providers do not support CoS tags such as 802.1p or DSCP. Also, most network equipment with standard configurations will not be able to recognize 802.1p tags, and could drop tagged traffic.

Although DSCP will not cause compatibility issues, many service providers will simply strip or ignore the DSCP tags, disregarding the code points.

If you wish to use 802.1p or DSCP marking on your network or your service provider’s network, you must first establish that these methods are supported. Verify that your internal network equipment can support CoS priority marking, and that it is correctly configured to do so. Check with your service provider – some offer fee-based support for QoS using these CoS methods.

Marking

Once the traffic has been classified, if it is to be handled by QoS capable external systems (for example, CoS aware switches or routers as might be available on a premium service provider’s infrastructure, or on a private WAN), it must be tagged so that the external systems can make use of the classification, and provide the correct handling and Per Hop Behaviors (PHB).

Originally, this was attempted at the IP layer (layer 3) with RFC791’s three Precedence bits and RFC1394 ToS (type of service) field, but this was used by a grand total of 17 people throughout history. Its successor, RFC2474 introduced the much more practical and widely used DSCP (Differentiated Services Code Point) which offered up to 64 classifications, as well as user-definable classes. DSCP was further enhanced by RFC2598 (Expedited Forwarding, intended to provide leased-line behaviors) and RFC2697 (Assured Forwarding levels within classes, also known as Gold, Silver, and Bronze levels).

DSCP is a safe marking method for traffic that traverses public networks because there is no risk of incompatibility. At the very worst, a hop along the path might disregard or strip the DSCP tag, but it will rarely mistreat or discard the packet.

The other prevalent method of CoS marking is IEEE 802.1p. 802.1p occurs at the MAC layer (layer 2) and is closely related to IEEE 802.1Q VLAN marking, sharing the same 16-bit field, although it is actually defined in the IEEE 802.1D standard. Unlike DSCP, 802.1p will only work with 802.1p capable equipment, and is not universally interoperable. Additionally, 802.1p, because of its different packet structure, can rarely traverse wide-area networks, even private WANs. Nonetheless, 802.1p is gaining wide support among Voice and Video over IP vendors, so a solution for supporting 802.1p across network boundaries (i.e. WAN links) was introduced in the form of **802.1p to DSCP mapping**.

802.1p to DSCP mapping allows 802.1p tags from one LAN to be mapped to DSCP values by SonicOS, allowing the packets to safely traverse WAN links. When the packets arrive on the other side of the WAN or VPN, the receiving SonicOS appliance can then map the DSCP tags back to 802.1p tags for use on that LAN. Refer to **802.1p and DSCP QoS** for more information.

Conditioning

The traffic can be conditioned (or managed) using any of the many policing, queuing, and shaping methods available. SonicOS provides internal conditioning capabilities with its Egress and Ingress Bandwidth Management (BWM), detailed in the **Bandwidth Management**. SonicOS’s BWM is a perfectly effective solution for fully autonomous private networks with sufficient bandwidth, but can become somewhat less effective as more unknown external network elements and bandwidth contention are introduced. Refer to the **DSCP marking: Example scenario** for a description of contention issues.
Topics:

- Site to Site VPN over QoS Capable Networks
- Site to Site VPN over Public Networks

Site to Site VPN over QoS Capable Networks

If the network path between the two end points is QoS aware, SonicOS can DSCP tag the inner encapsulate packet so that it is interpreted correctly at the other side of the tunnel, and it can also DSCP tag the outer ESP encapsulated packet so that its class can be interpreted and honored by each hop along the transit network. SonicOS can map 802.1p tags created on the internal networks to DSCP tags so that they can safely traverse the transit network. Then, when the packets are received on the other side, the receiving SonicWall appliance can translate the DSCP tags back to 802.1p tags for interpretation and honoring by that internal network.

Site to Site VPN over Public Networks

SonicOS integrated BWM is very effective in managing traffic between VPN connected networks because ingress and egress traffic can be classified and controlled at both endpoints. If the network between the endpoints is non QoS aware, it regards and treats all VPN ESP equally. Because there is typically no control over these intermediate networks or their paths, it is difficult to fully guarantee QoS, but BWM can still help to provide more predictable behavior.

Site to Site VPN over public networks

To provide end-to-end QoS, business-class service providers are increasingly offering traffic conditioning services on their IP networks. These services typically depend on the customer premise equipment to classify and tag the traffic, generally using a standard marking method such as DSCP. SonicOS has the ability to DSCP
mark traffic after classification, as well as the ability to map 802.1p tags to DSCP tags for external network traversal and CoS preservation. For VPN traffic, SonicOS can DSCP mark not only the internal (payload) packets, but the external (encapsulating) packets as well so that QoS capable service providers can offer QoS even on encrypted VPN traffic.

The actual conditioning method employed by service providers varies from one to the next, but it generally involves a class-based queuing method such as Weighted Fair Queuing for prioritizing traffic, as well a congestion avoidance method, such as tail-drop or Random Early Detection.

802.1p and DSCP QoS

Topics:
- Enabling 802.1p
- DSCP Marking

Enabling 802.1p

SonicOS supports layer 2 and layer 3 CoS methods for broad interoperability with external systems participating in QoS enabled environments. The layer 2 method is the IEEE 802.1p standard wherein 3-bits of an additional 16-bits inserted into the header of the Ethernet frame can be used to designate the priority of the frame, as illustrated in the following figure:

Ethernet data frame

<table>
<thead>
<tr>
<th>Bytes</th>
<th>7</th>
<th>1</th>
<th>6</th>
<th>6</th>
<th>2</th>
<th>2</th>
<th>46-1500</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>preamble</td>
<td>CHS</td>
<td>DA</td>
<td>SA</td>
<td>VPI</td>
<td>TCI</td>
<td>Len</td>
<td>LLC</td>
</tr>
</tbody>
</table>

- **TPID**: Tag Protocol Identifier begins at byte 12 (after the 6 byte destination and source fields), is 2 bytes long, and has an Ether type of 0x8100 for tagged traffic.
- **802.1p**: The first three bits of the TCI (Tag Control Information – beginning at byte 14, and spanning 2 bytes) define user priority, giving eight (2^3) priority levels. IEEE 802.1p defines the operation for these 3 user priority bits.
- **CFI**: Canonical Format Indicator is a single-bit flag, always set to zero for Ethernet switches. CFI is used for compatibility reasons between Ethernet networks and Token Ring networks. If a frame received at an Ethernet port has a CFI set to 1, then that frame should not be forwarded as it is to an untagged port.
- **VLAN ID**: VLAN ID (starts at bit 5 of byte 14) is the identification of the VLAN. It has 12-bits and allows for the identification of 4,096 (2^{12}) unique VLAN ID’s. Of the 4,096 possible IDs, an ID of 0 is used to identify priority frames, and an ID of 4,095 (FFF) is reserved, so the maximum possible VLAN configurations are 4,094.
802.1p support begins by enabling 802.1p marking on the interfaces which you wish to have process 802.1p tags. 802.1p can be enabled on any Ethernet interface on any SonicWall appliance.

The behavior of the 802.1p field within these tags can be controlled by Access Rules. The default 802.1p Access Rule action of None will reset existing 802.1p tags to 0, unless otherwise configured (see Managing QoS Marking for details).

Enabling 802.1p marking will allow the target interface to recognize incoming 802.1p tags generated by 802.1p capable network devices, and will also allow the target interface to generate 802.1p tags, as controlled by Access Rules. Frames that have 802.1p tags inserted by SonicOS will bear VLAN ID 0.

802.1p tags will only be inserted according to Access Rules, so enabling 802.1p marking on an interface will not, at its default setting, disrupt communications with 802.1p-incapable devices.

802.1p requires the specific support by the networking devices with which you wish to use this method of prioritization. Many voice and video over IP devices provide support for 802.1p, but the feature must be enabled. Check your equipment’s documentation for information on 802.1p support if you are unsure. Similarly, many server and host network cards (NICs) have the ability to support 802.1p, but the feature is usually disabled by default. On Win32 operating systems, you can check for and configure 802.1p settings on the Advanced view of the Properties page of your network card. If your card supports 802.1p, it is listed as 802.1p QoS, 802.1p Support, QoS Packet Tagging or something similar:

To process 802.1p tags, the feature must be present and enabled on the network interface. The network interface will then be able to generate packets with 802.1p tags, as governed by QoS capable applications. By default, general network communications will not have tags inserted so as to maintain compatibility with 802.1p-incapable devices.

NOTE: If your network interface does not support 802.1p, it will not be able to process 802.1p tagged traffic, and will ignore it. Make certain when defining Access Rules to enable 802.1p marking that the target devices are 802.1p capable.

It should also be noted that when performing a packet capture (for example, with the diagnostic tool Ethereal) on 802.1p capable devices, some 802.1p capable devices will not show the 802.1q header in the packet capture. Conversely, a packet capture performed on an 802.1p-incapable device will almost invariably show the header, but the host will be unable to process the packet.

Before moving on to Managing QoS Marking, it is important to introduce ‘DSCP Marking’ because of the potential interdependency between the two marking methods, as well as to explain why the interdependency exists.
DSCP marking: Example scenario

In the scenario above, we have **Remote Site 1** connected to ‘Main Site’ by an IPsec VPN. The company uses an internal 802.1p/DSCP capable VoIP phone system, with a private VoIP signaling server hosted at the Main Site. The Main Site has a mixed gigabit and Fast-Ethernet infrastructure, while Remote Site 1 is all Fast Ethernet. Both sites employ 802.1p capable switches for prioritization of internal traffic.

1. PC-1 at Remote Site 1 is transferring a 23 terabyte PowerPoint™ presentation to File Server 1, and the 100mbit link between the workgroup switch and the upstream switch is completely saturated.

2. At the Main Site, a caller on the 802.1p/DSCP capable VoIP Phone 10.50.165.200 initiates a call to the person at VoIP phone 192.168.168.200. The calling VoIP phone 802.1p tags the traffic with priority tag 6 (voice), and DSCP tags the traffic with a tag of 48.
 a. If the link between the Core Switch and the firewall is a VLAN, some switches will include the received 802.1p priority tag, in addition to the DSCP tag, in the packet sent to the firewall; this behavior varies from switch to switch, and is often configurable.
 b. If the link between the Core Switch and the firewall is not a VLAN, there is no way for the switch to include the 802.1p priority tag. The 802.1p priority is removed, and the packet (including only the DSCP tag) is forwarded to the firewall.

When the firewall sent the packet across the VPN/WAN link, it could include the DSCP tag in the packet, but it is not possible to include the 802.1p tag. This would have the effect of losing all prioritization information for the VoIP traffic, because when the packet arrived at the Remote Site, the switch would have no 802.1p MAC layer information with which to prioritize the traffic. The Remote Site switch would treat the VoIP traffic the same as the lower-priority file transfer because of the link saturation, introducing delay—maybe even dropped packets—to the VoIP flow, resulting in call quality degradation.

So how can critical 802.1p priority information from the Main Site LAN persist across the VPN/WAN link to Remote Site LAN? Through the use of QoS Mapping.
QoS Mapping is a feature which converts layer 2 802.1p tags to layer 3 DSCP tags so that they can safely traverse (in mapped form) 802.1p-incapable links; when the packet arrives for delivery to the next 802.1p-capable segment, QoS Mapping converts from DSCP back to 802.1p tags so that layer 2 QoS can be honored.

In our above scenario, the firewall at the Main Site assigns a DSCP tag (for example, value 48) to the VoIP packets, as well as to the encapsulating ESP packets, allowing layer 3 QoS to be applied across the WAN. This assignment can occur either by preserving the existing DSCP tag, or by mapping the value from an 802.1p tag, if present. When the VoIP packets arrive at the other side of the link, the mapping process is reversed by the receiving SonicWall, mapping the DSCP tag back to an 802.1p tag.

The receiving SonicWall at the Remote Site is configured to map the DSCP tag range 48-55 to 802.1p tag 6. When the packet exits the firewall, it will bear 802.1p tag 6. The Switch will recognize it as voice traffic, and will prioritize it over the file-transfer, guaranteeing QoS even in the event of link saturation.

DSCP Marking

DSCP (Differentiated Services Code Point) marking uses 6-bits of the 8-bit ToS field in the IP Header to provide up to 64 classes (or code points) for traffic. Since DSCP is a layer 3 marking method, there is no concern about compatibility as there is with 802.1p marking. Devices that do not support DSCP will simply ignore the tags, or at worst, they will reset the tag value to 0.

DSCP marking: IP packet

![Diagram of IP Packet with close-up on TOS portion of header]

The above diagram depicts an IP packet, with a close-up on the ToS portion of the header. The ToS bits were originally used for Precedence and ToS (delay, throughput, reliability, and cost) settings, but were later repurposed by RFC2474 for the more versatile DSCP settings.

The following table shows the commonly used code points, as well as their mapping to the legacy Precedence and ToS settings.

<table>
<thead>
<tr>
<th>DSCP</th>
<th>DSCP Description</th>
<th>Legacy IP Precedence</th>
<th>Legacy IP ToS (D, T, R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Best effort</td>
<td>0 (Routine – 000)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Class 1</td>
<td>1 (Priority – 001)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Class 1, gold (AF11)</td>
<td>1 (Priority – 001)</td>
<td>T</td>
</tr>
<tr>
<td>12</td>
<td>Class 1, silver (AF12)</td>
<td>1 (Priority – 001)</td>
<td>D</td>
</tr>
</tbody>
</table>
DSCP marking can be performed on traffic to/from any interface and to/from any zone type, without exception. DSCP marking is controlled by Access Rules, from the QoS view, and can be used in conjunction with 802.1p marking, as well as with SonicOS’s internal bandwidth management.

Topics:
- DSCP Marking and Mixed VPN Traffic
- Configure for 802.1p CoS 4 – Controlled load
- QoS Mapping
- Managing QoS Marking

DSCP Marking and Mixed VPN Traffic

Among their many security measures and characteristics, IPsec VPNs employ anti-replay mechanisms based upon monotonically incrementing sequence numbers added to the ESP header. Packets with duplicate sequence numbers are dropped, as are packets that do not adhere to sequence criteria. One such criterion governs the handling of out-of-order packets. SonicOS provides a replay window of 64 packets, i.e. if an ESP packet for a Security Association (SA) is delayed by more than 64 packets, the packet will be dropped.

This should be considered when using DSCP marking to provide layer 3 QoS to traffic traversing a VPN. If you have a VPN tunnel that is transporting a diversity of traffic, some that is being DSCP tagged high priority (for example, VoIP), and some that is DSCP tagged low-priority, or untagged/best-effort (for example, FTP), your service provider will prioritize the handling and delivery of the high-priority ESP packets over the best-effort ESP packets. Under certain traffic conditions, this can result in the best-effort packets being delayed for more than 64 packets, causing them to be dropped by the receiving SonicWall’s anti-replay defenses.

If symptoms of such a scenario emerge (for example, excessive retransmissions of low-priority traffic), it is recommended that you create a separate VPN policy for the high-priority and low-priority classes of traffic. This

DSCP marking: Commonly used code points

<table>
<thead>
<tr>
<th>DSCP</th>
<th>DSCP Description</th>
<th>Legacy IP Precedence</th>
<th>Legacy IP ToS (D, T, R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Class 1, bronze (AF13)</td>
<td>1 (Priority – 001)</td>
<td>D, T</td>
</tr>
<tr>
<td>16</td>
<td>Class 2</td>
<td>2 (Immediate – 010)</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Class 2, gold (AF21)</td>
<td>2 (Immediate – 010)</td>
<td>T</td>
</tr>
<tr>
<td>20</td>
<td>Class 2, silver (AF22)</td>
<td>2 (Immediate – 010)</td>
<td>D</td>
</tr>
<tr>
<td>22</td>
<td>Class 2, bronze (AF23)</td>
<td>2 (Immediate – 010)</td>
<td>D, T</td>
</tr>
<tr>
<td>24</td>
<td>Class 3</td>
<td>3 (Flash – 011)</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>Class 3, gold (AF31)</td>
<td>3 (Flash – 011)</td>
<td>T</td>
</tr>
<tr>
<td>27</td>
<td>Class 3, silver (AF32)</td>
<td>3 (Flash – 011)</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>Class 3, bronze (AF33)</td>
<td>3 (Flash – 011)</td>
<td>D, T</td>
</tr>
<tr>
<td>32</td>
<td>Class 4</td>
<td>4 (Flash Override – 100)</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>Class 4, gold (AF41)</td>
<td>4 (Flash Override – 100)</td>
<td>T</td>
</tr>
<tr>
<td>36</td>
<td>Class 4, silver (AF42)</td>
<td>4 (Flash Override – 100)</td>
<td>D</td>
</tr>
<tr>
<td>38</td>
<td>Class 4, bronze (AF43)</td>
<td>4 (Flash Override – 100)</td>
<td>D, T</td>
</tr>
<tr>
<td>40</td>
<td>Express forwarding</td>
<td>5 (CRITIC/ECP (^1) – 101)</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>Expedited forwarding (EF)</td>
<td>5 (CRITIC/ECP – 101)</td>
<td>D, T</td>
</tr>
<tr>
<td>48</td>
<td>Control</td>
<td>6 (Internet Control – 110)</td>
<td>-</td>
</tr>
<tr>
<td>56</td>
<td>Control</td>
<td>7 (Network Control – 111)</td>
<td>-</td>
</tr>
</tbody>
</table>

1. ECP: Elliptic Curve Group
is most easily accomplished by placing the high-priority hosts (for example, the VoIP network) on their own subnet.

Configure for 802.1p CoS 4 – Controlled load

If you want to change the inbound mapping of DSCP tag 15 from its default 802.1p mapping of 1 to an 802.1p mapping of 2, it would have to be done in two steps because mapping ranges cannot overlap. Attempting to assign an overlapping mapping will give the error DSCP range already exists or overlaps with another range. First, you will have to remove 15 from its current end-range mapping to 802.1p CoS 1 (changing the end-range mapping of 802.1p CoS 1 to DSCP 14), then you can assign DSCP 15 to the start-range mapping on 802.1p CoS 2.

QoS Mapping

The primary objective of QoS Mapping is to allow 802.1p tags to persist across non-802.1p compliant links (for example, WAN links) by mapping them to corresponding DSCP tags before sending across the WAN link, and then mapping from DSCP back to 802.1p upon arriving at the other side:

QoS mapping

```
<table>
<thead>
<tr>
<th>802.1p Class Of Service</th>
<th>To DSCP</th>
<th>From DSCP Range</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Best effort</td>
<td>0 - 7</td>
<td>0-7</td>
<td></td>
</tr>
<tr>
<td>1 - Background</td>
<td>8 - 15</td>
<td>8-15</td>
<td></td>
</tr>
<tr>
<td>2 - Span</td>
<td>16 - 23</td>
<td>16-23</td>
<td></td>
</tr>
<tr>
<td>3 - Excellent</td>
<td>24 - 31</td>
<td>24-31</td>
<td></td>
</tr>
<tr>
<td>4 - Controlled</td>
<td>32 - 39</td>
<td>32-39</td>
<td></td>
</tr>
<tr>
<td>5 - Video (40ms latency)</td>
<td>40 - 47</td>
<td>40-47</td>
<td></td>
</tr>
<tr>
<td>6 - Voice (50ms latency)</td>
<td>48 - 55</td>
<td>48-55</td>
<td></td>
</tr>
<tr>
<td>7 - Network</td>
<td>56 - 63</td>
<td>56-63</td>
<td></td>
</tr>
</tbody>
</table>
```

For example, according to the default table, an 802.1p tag with a value of 2 will be outbound mapped to a DSCP value of 16, while a DSCP tag of 43 will be inbound mapped to an 802.1 value of 5.
Each of these mappings can be reconfigured. If you wanted to change the outbound mapping of 802.1p tag 4 from its default DSCP value of 32 to a DSCP value of 43, you can click the Configure icon for 4 – Controlled load and select the new To DSCP value from the drop-down box:

You can restore the default mappings by clicking the Reset QoS Settings button.

Managing QoS Marking

QoS marking is configured from the QoS view of the Add/Edit Rule dialog of the Policies | Rules > Access Rules page:

<table>
<thead>
<tr>
<th>Action</th>
<th>802.1p (layer 2 CoS)</th>
<th>DSCP (layer 3)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>When packets matching this class of traffic (as defined by the Access Rule) are sent out the egress interface, no 802.1p tag will be added.</td>
<td>The DSCP tag is explicitly set (or reset) to 0.</td>
<td>If the target interface for this class of traffic is a VLAN subinterface, the 802.1p portion of the 802.1q tag will be explicitly set to 0. If this class of traffic is destined for a VLAN and is using 802.1p for prioritization, a specific Access Rule using the Preserve, Explicit, or Map action should be defined for this class of traffic.</td>
</tr>
<tr>
<td>Preserve</td>
<td>Existing 802.1p tag will be preserved.</td>
<td>Existing DSCP tag value will be preserved.</td>
<td></td>
</tr>
</tbody>
</table>
QoS marking: Behavior

<table>
<thead>
<tr>
<th>Action</th>
<th>802.1p (layer 2 CoS)</th>
<th>DSCP (layer 3)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit</td>
<td>An explicit 802.1p tag value can be assigned (0-7) from a drop-down menu that will be presented.</td>
<td>An explicit DSCP tag value can be assigned (0-63) from a drop-down menu that will be presented.</td>
<td>If either the 802.1p or the DSCP action is set to Explicit while the other is set to Map, the explicit assignment occurs first, and then the other is mapped according to that assignment.</td>
</tr>
<tr>
<td>Map</td>
<td>The mapping setting defined in the Firewall Settings > QoS Mapping page will be used to map from a DSCP tag to an 802.1p tag</td>
<td>The mapping setting defined in the Firewall Settings > QoS Mapping page will be used to map from an 802.1 tag to a DSCP tag. An additional checkbox will be presented to Allow 802.1p Marking to override DSCP values. Selecting this checkbox will assert the mapped 802.1p value over any DSCP value that might have been set by the client. This is useful to override clients setting their own DSCP CoS values.</td>
<td>If Map is set as the action on both DSCP and 802.1p, mapping will only occur in one direction: if the packet is from a VLAN and arrives with an 802.1p tag, then DSCP will be mapped from the 802.1p tag; if the packet is destined to a VLAN, then 802.1p will be mapped from the DSCP tag.</td>
</tr>
</tbody>
</table>

For example, refer to **Bi-directional DSCP tag action**, which provides a bi-directional DSCP tag action.

Bi-directional DSCP tag action

HTTP access from a Web-browser on 192.168.168.100 to the Web server on 10.50.165.2 will result in the tagging of the inner (payload) packet and the outer (encapsulating ESP) packets with a DSCP value of 8. When the packets emerge from the other end of the tunnel, and are delivered to 10.50.165.2, they will bear a DSCP tag of 8. When 10.50.165.2 sends response packets back across the tunnel to 192.168.168.100 (beginning with the very first SYN/ACK packet) the Access Rule will tag the response packets delivered to 192.168.168.100 with a DSCP value of 8.

This behavior applies to all four QoS action settings for both DSCP and 802.1p marking.

One practical application for this behavior would be configuring an 802.1p marking rule for traffic destined for the VPN zone. Although 802.1p tags cannot be sent across the VPN, reply packets coming back across the VPN...
can be 802.1p tagged on egress from the tunnel. This requires that 802.1p tagging is active of the physical egress interface, and that the [Zone] > VPN Access Rule has an 802.1p marking action other than None.

After ensuring 802.1p compatibility with your relevant network devices, and enabling 802.1p marking on applicable SonicWall interfaces, you can begin configuring Access Rules to manage 802.1p tags.

The Remote Site 1 network could have two Access Rules configured as in Remote site 1: Sample access rule configuration.

Remote site 1: Sample access rule configuration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Access Rule 1</th>
<th>Access Rule 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>General View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Allow</td>
<td>Allow</td>
</tr>
<tr>
<td>From Zone</td>
<td>LAN</td>
<td>VPN</td>
</tr>
<tr>
<td>To Zone</td>
<td>VPN</td>
<td>LAN</td>
</tr>
<tr>
<td>Service</td>
<td>VOIP</td>
<td>VOIP</td>
</tr>
<tr>
<td>Source</td>
<td>Lan Primary Subnet</td>
<td>Main Site Subnets</td>
</tr>
<tr>
<td>Destination</td>
<td>Main Site Subnets</td>
<td>Lan Primary Subnet</td>
</tr>
<tr>
<td>Users Allowed</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always on</td>
<td>Always on</td>
</tr>
<tr>
<td>Enable Logging</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Allow Fragmented Packets</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Qos View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSCP Marking Action</td>
<td>Map</td>
<td>Map</td>
</tr>
<tr>
<td>Allow 802.1p Marking to override DSCP values</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>802.1p Marking Action</td>
<td>Map</td>
<td>Map</td>
</tr>
</tbody>
</table>

The first Access Rule (governing LAN>VPN) would have the following effects:

- **VoIP traffic** (as defined by the Service Group) from **LAN Primary Subnet** destined to be sent across the VPN to **Main Site Subnets** would be evaluated for both DSCP and 802.1p tags.

 - The combination of setting both DSCP and 802.1p marking actions to **Map** is described in the table earlier in Managing QoS Marking.

 - Sent traffic containing only an 802.1p tag (for example, CoS = 6) would have the VPN-bound inner (payload) packet DSCP tagged with a value of 48. The outer (ESP) packet would also be tagged with a value of 48.

 - Assuming returned traffic has been DSCP tagged (CoS = 48) by the firewall at the Main Site, the return traffic will be 802.1p tagged with CoS = 6 on egress.

 - Sent traffic containing only a DSCP tag (for example, CoS = 48) would have the DSCP value preserved on both inner and outer packets.

 - Assuming returned traffic has been DSCP tagged (CoS = 48) by the firewall at the Main Site, the return traffic will be 802.1p tagged with CoS = 6 on egress.

 - Sent traffic containing only both an 802.1p tag (for example, CoS = 6) and a DSCP tag (for example, CoS = 63) would give precedence to the 802.1p tag and would be mapped accordingly. The VPN-bound inner (payload) packet DSCP would be tagged with a value of 48. The outer (ESP) packet would also be tagged with a value of 48.

 Assuming returned traffic has been DSCP tagged (CoS = 48) by the firewall at the Main Site, the return traffic will be 802.1p tagged with CoS = 6 on egress.
To examine the effects of the second Access Rule (VPN>LAN), we’ll look at the Access Rules configured at the Main Site, as shown in Main site: Sample access rule configurations.

Main site: Sample access rule configurations

<table>
<thead>
<tr>
<th>Setting</th>
<th>Access Rule 1</th>
<th>Access Rule 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>General View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Allow</td>
<td>Allow</td>
</tr>
<tr>
<td>From Zone</td>
<td>LAN</td>
<td>VPN</td>
</tr>
<tr>
<td>To Zone</td>
<td>VPN</td>
<td>LAN</td>
</tr>
<tr>
<td>Service</td>
<td>VOIP</td>
<td>VOIP</td>
</tr>
<tr>
<td>Source</td>
<td>Lan Subnets</td>
<td>Remote Site 1 Subnets</td>
</tr>
<tr>
<td>Destination</td>
<td>Remote Site 1 Subnets</td>
<td>Lan Subnets</td>
</tr>
<tr>
<td>Users Allowed</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always on</td>
<td>Always on</td>
</tr>
<tr>
<td>Enable Logging</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Allow Fragmented Packets</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>QoS View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSCP Marking Action</td>
<td>Map</td>
<td>Map</td>
</tr>
<tr>
<td>Allow 802.1p Marking to override DSCP values</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>802.1p Marking Action</td>
<td>Map</td>
<td>Map</td>
</tr>
</tbody>
</table>

VoIP traffic (as defined by the Service Group) arriving from **Remote Site 1 Subnets** across the VPN destined to **LAN Subnets** on the LAN zone at the Main Site would hit the Access Rule for inbound VoIP calls. Traffic arriving at the VPN zone will not have any 802.1p tags, only DSCP tags.

- Traffic exiting the tunnel containing a DSCP tag (for example, CoS = 48) would have the DSCP value preserved. Before the packet is delivered to the destination on the LAN, it will also be 802.1p tagged according to the **QoS Mapping** settings (for example, CoS = 6) by the firewall at the Main Site.
- Assuming returned traffic has been 802.1p tagged (for example, CoS = 6) by the VoIP phone receiving the call at the Main Site, the return traffic will be DSCP tagged according to the conversion map (CoS = 48) on both the inner and outer packet sent back across the VPN.
- Assuming returned traffic has been DSCP tagged (for example, CoS = 48) by the VoIP phone receiving the call at the Main Site, the return traffic will have the DSCP tag preserved on both the inner and outer packet sent back across the VPN.
- Assuming returned traffic has been both 802.1p tagged (for example, CoS = 6) and DSCP tagged (for example, CoS = 14) by the VoIP phone receiving the call at the Main Site, the return traffic will be DSCP tagged according to the conversion map (CoS = 48) on both the inner and outer packet sent back across the VPN.

Bandwidth Management

For information on Bandwidth Management (BWM), see Bandwidth management (BWM) is a means of allocating bandwidth resources to critical applications on a network.
Glossary

- **802.1p** – IEEE 802.1p is a Layer 2 (MAC layer) Class of Service mechanism that tags packets by using 3 priority bits (for a total of 8 priority levels) within the additional 16-bits of an 802.1q header. 802.1p processing requires compatible equipment for tag generation, recognition and processing, and should only be employed on compatible networks.

- **Bandwidth Management (BWMM)** – Refers to any of a variety of algorithms or methods used to shape traffic or police traffic. Shaping often refers to the management of outbound traffic, while policing often refers to the management of inbound traffic (also known as admission control). There are many different methods of bandwidth management, including various queuing and discarding techniques, each with their own design strengths. SonicWall employs a Token Based Class Based Queuing method for inbound and outbound BWMM, as well as a discard mechanism for certain types of inbound traffic.

- **Class of Service (CoS)** – A designator or identifier, such as a layer 2 or layer 3 tag, that is applied to traffic after classification. CoS information will be used by the Quality of Service (QoS) system to differentiate between the classes of traffic on the network, and to provide special handling (for example, prioritized queuing, low latency) as defined by the QoS system administrator.

- **Classification** – The act of identifying (or differentiating) certain types (or classes) of traffic. Within the context of QoS, this is performed for the sake of providing customized handling, typically prioritization or de-prioritization, based on the traffic’s sensitivity to delay, latency, or packet loss. Classification within SonicOS uses Access Rules, and can occur based on any or all of the following elements: source zone, destination zone, source address object, destination address object, service object, schedule object.

- **Code Point** – A value that is marked (or tagged) into the DSCP portion of an IP packet by a host or by an intermediate network device. There are currently 64 Code Points available, from 0 to 63, used to define the ascending prioritized class of the tagged traffic.

- **Conditioning** – A broad term used to describe a plurality of methods of providing Quality of Service to network traffic, including but not limited to discarding, queuing, policing, and shaping.

- **DiffServ** (Differentiated Services) – A standard for differentiating between different types or classes of traffic on an IP network for the purpose of providing tailored handling to the traffic based on its requirements. DiffServ primarily depends upon Code Point values marked in the ToS header of an IP packet to differentiate between different classes of traffic. DiffServ service levels are executed on a Per Hop Basis at each router (or other DiffServ enabled network device) through which the marked traffic passes. DiffServ Service levels currently include at a minimum Default, Assured Forwarding, Expedited Forwarding, and DiffServ. Refer to DSCP Marking for more information.

- **Discarding** – A congestion avoidance mechanism that is employed by QoS systems in an attempt to predict when congestion might occur on a network, and to prevent the congestion by dropping over-limit traffic. Discarding can also be thought of as a queue management algorithm, since it attempts to avoid situations of full queues. Advanced discard mechanisms will abide by CoS markings so as to avoid dropping sensitive traffic. Common methods are:
 - **Tail Drop** – An indiscriminate method of dealing with a full queue wherein the last packets into the queue are dropped, regardless of their CoS marking.
 - **Random Early Detection (RED)** – RED monitors the status of queues to try to anticipate when a queue is about to become full. It then randomly discards packets in a staggered fashion to help minimize the potential of Global Synchronization. Basic implementations of RED, like Tail Drop, do not consider CoS markings.
 - **Weighted Random Early Detection (WRED)** – An implementation of RED that factors DSCP markings into its discard decision process.

- **DSCP** (Differentiated Services Code Points) – The repurposing of the ToS field of an IP header as described by RFC2747. DSCP uses 64 Code Point values to enable DiffServ (Differentiated Services). By marking traffic according to its class, each packet can be treated appropriately at every hop along the network.
• **Global Synchronization** – A potential side effect of discarding, the congestion avoidance method designed to deal with full queues. Global Synchronization occurs when multiple TCP flows through a congested link are dropped at the same time (as can occur in Tail Drop). When the native TCP slow-start mechanism commences with near simultaneity for each of these flows, the flows will again flood the link. This leads to cyclical waves of congestion and under-utilization.

• **Guaranteed Bandwidth** – A declared percentage of the total available bandwidth on an interface which will always be granted to a certain class of traffic. Applicable to both inbound and outbound BWM. The total Guaranteed Bandwidth across all BWM rules cannot exceed 100% of the total available bandwidth. SonicOS enhances the Bandwidth Management feature to provide rate limiting functionality. You can now create traffic policies that specify maximum rates for Layer 2, 3, or 4 network traffic. This enables bandwidth management in cases where the primary WAN link fails over to a secondary connection that cannot handle as much traffic. The Guaranteed Bandwidth can also be set to 0%.

• **Inbound (Ingress or IBWM)** – The ability to shape the rate at which traffic enters a particular interface. For TCP traffic, actual shaping can occur where the rate of the ingress flow can be adjusted by delaying egress acknowledgements (ACKs) causing the sender to slow its rate. For UDP traffic, a discard mechanism is used since UDP has no native feedback controls.

• **IntServ** (Integrated Services) – As defined by RFC1633. An alternative CoS system to DiffServ, IntServ differs fundamentally from DiffServ in that it has each device request (or reserve) its network requirements before it sends its traffic. This requires that each hop on the network be IntServ aware, and it also requires each hop to maintain state information for every flow. IntServ is not supported by SonicOS. The most common implementation of IntServ is RSVP.

• **Maximum Bandwidth** – A declared percentage of the total available bandwidth on an interface defining the maximum bandwidth to be allowed to a certain class of traffic. Applicable to both inbound and outbound BWM. Used as a throttling mechanism to specify a bandwidth rate limit. The Bandwidth Management feature is enhanced to provide rate limiting functionality. You can now create traffic policies that specify maximum rates for Layer 2, 3, or 4 network traffic. This enables bandwidth management in cases where the primary WAN link fails over to a secondary connection that cannot handle as much traffic. The Maximum Bandwidth can be set to 0%, which will prevent all traffic.

• **Outbound (Egress or OBWM)** – Conditioning the rate at which traffic is sent out an interface. Outbound BWM uses a credit (or token) based queuing system with 8 priority rings to service different types of traffic, as classified by Access Rules.

• **Priority** – An additional dimension used in the classification of traffic. SonicOS uses 8 priority rings (0 = highest, 7 = lowest) to comprise the queue structure used for BWM. Queues are serviced in the order of their priority ring.

• **Mapping** – With regard to SonicOS’s implementation of QoS, mapping is the practice of converting layer 2 CoS tags (802.1p) to layer 3 CoS tags (DSCP) and back again for preserving the 802.1p tags across network links that do not support 802.1p tagging. The map correspondence is fully user-definable, and the act of mapping is controlled by Access Rules.

• **Marking** – Also known as **tagging** or **coloring** – The act of applying layer 2 (802.1p) or layer 3 (DSCP) information to a packet for the purpose of differentiation, so that it can be properly classified (recognized) and prioritized by network devices along the path to its destination.

• **MPLS** (Multi Protocol Label Switching) – A term that comes up frequently in the area of QoS, but which is natively unsupported by most customer premise IP networking devices, including SonicWall appliances. MPLS is a carrier-class network service that attempts to enhance the IP network experience by adding the concept connection-oriented paths (Label Switch Paths – LSPs) along the network. When a packet leaves a customer premise network, it is tagged by a Label Edge Router (LER) so that the label can be used to determine the LSP. The MPLS tag itself resides between layer 2 and layer 3, imparting upon MPLS characteristics of both network layers. MPLS is becoming quite popular for VPNs, offering both layer 2 and layer 3 VPN services, but remains interoperable with existing IPsec VPN implementation. MPLS is also very well known for its QoS capabilities, and interoperates well with conventional DSCP marking.
• **Per Hop Behavior (PHB)** – The handling that will be applied to a packet by each DiffServ capable router it traverses, based upon the DSCP classification of the packet. The behavior can be among such actions as discard, re-mark (re-classify), best-effort, assured forwarding, or expedited forwarding.

• **Policing** – A facility of traffic conditioning that attempts to control the rate of traffic into or out of a network link. Policing methods range from indiscriminate packet discarding to algorithmic shaping, to various queuing disciplines.

• **Queuing** – To effectively make use of a link’s available bandwidth, queues are commonly employed to sort and separately manage traffic after it has been classified. Queues are then managed using a variety of methods and algorithms to ensure that the higher priority queues always have room to receive more traffic, and that they can be serviced (de-queued or processed) before lower priority queues. Some common queue disciplines include:
 - **FIFO** (First In First Out) – A very simple, undiscriminating queue where the first packet in is the first packet to be processed.
 - **Class Based Queuing (CBQ)** – A queuing discipline that takes into account the CoS of a packet, ensuring that higher priority traffic is treated preferentially.
 - **Weighted Fair Queuing (WFQ)** – A discipline that attempts to service queues using a simple formula based upon the packets’ IP precedence and the total number of flows. WFQ has a tendency to become imbalanced when there is a disproportionately large number of high-priority flows to be serviced, often having the opposite of the desired effect.
 - **Token Based CBQ** – An enhancement to CBQ that employs a token, or a credit-based system that helps to smooth or normalize link utilization, avoiding burstiness as well as under-utilization. Employed by SonicOS BWM.

• **RSVP** (Resource Reservation Protocol) – An IntServ signaling protocol employed by some applications where the anticipated need for network behavior (for example, delay and bandwidth) is requested so that it can be reserved along the network path. Setting up this Reservation Path requires that each hop along the way be RSVP capable, and that each agrees to reserve the requested resources. This system of QoS is comparatively resource intensive, since it requires each hop to maintain state on existing flows. Although IntServ’s RSVP is quite different from DiffServ’s DSCP, the two can interoperate. RSVP is not supported by SonicOS.

• **Shaping** – An attempt by a QoS system to modify the rate of traffic flow, usually by employing some feedback mechanism to the sender. The most common example of this is TCP rate manipulation, where acknowledgements (ACKs) sent back to a TCP sender are queued and delayed so as to increase the calculated round-trip time (RTT), leveraging the inherent behavior of TCP to force the sender to slow the rate at which it sends data.

• **Type of Service (ToS)** – A field within the IP header wherein CoS information can be specified. Historically used, albeit somewhat rarely, in conjunction with IP precedence bits to define CoS. The ToS field is now rather commonly used by DiffServ’s code point values.
This section describes how to plan, design, implement, and maintain the SSL Control feature.

Topics:
- About SSL Control
- SSL Control Configuration
- Enabling SSL Control on Zones
- SSL Control Events

About SSL Control

SonicOS includes SSL Control, a system for providing visibility into the handshake of SSL sessions and a method for constructing policies to control the establishment of SSL connections. SSL (Secure Sockets Layer) is the dominant standard for the encryption of TCP-based network communications, with its most common and well-known application being HTTPS (HTTP over SSL); see HTTP over SSL communication. SSL provides digital certificate-based endpoint identification, and cryptographic and digest-based confidentiality to network communications.
HTTP over SSL communication

An effect of the security provided by SSL is the obscuration of all payload, including the URL (Uniform Resource Locator, for example, https://www.mysonicwall.com) being requested by a client when establishing an HTTPS session. This is due to the fact that HTTP is transported within the encrypted SSL tunnel when using HTTPS. It is not until the SSL session is established (see HTTP over SSL communication) that the actual target resource (www.mysonicwall.com) is requested by the client, but as the SSL session is already established, no inspection of the session data by the firewall or any other intermediate device is possible. As a result, URL-based content filtering systems cannot consider the request to determine permissibility in any way other than by IP address.

While IP address based filtering does not work well for unencrypted HTTP because of the efficiency and popularity of host-header-based virtual hosting (defined in Key Concepts to SSL Control), IP filtering can work effectively for HTTPS due to the rarity of host-header-based HTTPS sites. But this trust relies on the integrity of the HTTPS server operator, and assumes that SSL is not being used for deceptive purposes.

For the most part, SSL is employed legitimately, being used to secure sensitive communications, such as online shopping or banking, or any session where there is an exchange of personal or valuable information. The ever decreasing cost and complexity of SSL, however, has also spurred the growth of more dubious applications of SSL, designed primarily for the purposes of obfuscation or concealment rather than security.

An increasingly common camouflage is the use of SSL encrypted Web-based proxy servers for the purpose of hiding browsing details, and bypassing content filters. While it is simple to block well known HTTPS proxy services of this sort by their IP address, it is virtually impossible to block the thousands of privately-hosted proxy servers that are readily available through a simple Web-search. The challenge is not the ever-increasing number of such services, but rather their unpredictable nature. Since these services are often hosted on home networks...
using dynamically addressed DSL and cable modem connections, the targets are constantly moving. Trying to block an unknown SSL target would require blocking all SSL traffic, which is practically infeasible.

SSL Control provides a number of methods to address this challenge by arming the security administrator with the ability to dissect and apply policy based controls to SSL session establishment. While the current implementation does not decode the SSL application data, it does allow for gateway-based identification and disallowance of suspicious SSL traffic.

Topics:
- Key Features of SSL Control
- Key Concepts to SSL Control
- Caveats and Advisories

Key Features of SSL Control

SSL control: Features and benefits

<table>
<thead>
<tr>
<th>Feature and Black Lists</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name-based White and Black Lists</td>
<td>You can define lists of explicitly allowed or denied certificate subject common names (described in Key Concepts). Entries are matched on substrings, for example, a blacklist entry for prox will match www.megaproxy.com, www.proxify.com and roxify.net. This allows you to easily block all SSL exchanges employing certificates issued to subjects with potentially objectionable names. Inversely, you can easily authorize all certificates within an organization by whitelisting a common substring for the organization. Each list can contain up to 1,024 entries. As the evaluation is performed on the subject common name embedded in the certificate, even if the client attempts to conceal access to these sites by using an alternative hostname or even an IP address, the subject is always detected in the certificate, and policy is applied.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Signed Certificate Control</td>
<td>It is common practice for legitimate sites secured by SSL to use certificates issued by well-known certificate authorities, as this is the foundation of trust within SSL. It is almost equally common for network appliances secured by SSL (such as SonicWall network security appliances) to use self-signed certificates for their default method of security. So while self-signed certificates in closed environments are not suspicious, the use of self-signed certificates by publicly or commercially available sites is. A public site using a self-signed certificate is often an indication that SSL is being used strictly for encryption rather than for trust and identification. While not absolutely incriminating, this sometimes suggests that concealment is the goal, as is commonly the case for SSL encrypted proxy sites. The ability to set a policy to block self-signed certificates allows you to protect against this potential exposure. To prevent discontinuity of communications to known/trusted SSL sites using self-signed certificates, the whitelist feature can be used for explicit allowance.</td>
</tr>
</tbody>
</table>
SSL Control: Features and Benefits

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untrusted Certificate Authority Control</td>
<td>Like the use of self-signed certificates, encountering a certificate issued by an untrusted CA is not an absolute indication of disreputable obscuration, but it does suggest questionable trust. SSL Control can compare the issuer of the certificate in SSL exchanges against the certificates in the firewall’s certificate store. The certificate store contains approximately 100 well-known CA certificates, exactly like today’s Web-browsers. If SSL Control encounters a certificate that was issued by a CA not in its certificate store, it can disallow the SSL connection. For organizations running their own private certificate authorities, the private CA certificate can easily be imported into the firewall’s certificate store to recognize the private CA as trusted. The store can hold up to 256 certificates.</td>
</tr>
<tr>
<td>SSL version, Cipher Strength, and Certificate Validity Control</td>
<td>SSL Control provides additional management of SSL sessions based on characteristics of the negotiation, including the ability to disallow the potentially exploitable SSLv2, the ability to disallow weak encryption (ciphers less than 64 bits), and the ability to disallow SSL negotiations where a certificate’s date ranges are invalid. This enables the administrator to create a rigidly secure environment for network users, eliminating exposure to risk through unseen cryptographic weaknesses, or through disregard for or misunderstanding of security warnings.</td>
</tr>
<tr>
<td>Zone-Based Application</td>
<td>SSL Control is applied at the zone level, allowing you to enforce SSL policy on the network. When SSL Control is enabled on the zone, the firewall looks for Client Hellos sent from clients on that zone through the firewall, which triggers inspection. The firewall looks for the Server Hello and Certificate that is sent in response for evaluation against the configured policy. Enabling SSL Control on the LAN zone, for example, inspects all SSL traffic initiated by clients on the LAN to any destination zone.</td>
</tr>
<tr>
<td>Configurable Actions and Event Notifications</td>
<td>When SSL Control detects a policy violation, it can log the event and block the connection, or it can simply log the event while allowing the connection to proceed.</td>
</tr>
</tbody>
</table>

Key Concepts to SSL Control

- **SSL**: Secure Sockets Layer (SSL) is a network security mechanism introduced by Netscape in 1995. SSL was designed to provide privacy between two communicating applications (a client and a server) and also to authenticate the server, and optionally the client. SSL’s most popular application is HTTPS, designated by a URL beginning with `https://` rather than simply `http://`, and it is recognized as the standard method of encrypting Web traffic on the Internet. An SSL HTTP transfer typically uses TCP port 443, whereas a regular HTTP transfer uses TCP port 80. Although HTTPS is what SSL is best known for, SSL is not limited to securing HTTP, but can also be used to secure other TCP protocols such as SMTP, POP3, IMAP, and LDAP. SSL session establishment occurs as shown in Establishing an SSL session:
Establishing an SSL session

- **SSLv2** – The earliest version of SSL still in common use. SSLv2 was found to have a number of weaknesses, limitations, and theoretical deficiencies (comparatively noted in the SSLv3 entry), and is looked upon with scorn, disdain, and righteous indignation by security purists.

- **SSLv3** – SSLv3 was designed to maintain backward compatibility with SSLv2, while adding the following enhancements:
 - Alternate key exchange methods, including Diffie-Hellman.
 - Hardware token support for both key exchange and bulk encryption.
 - SHA, DSS, and Fortezza support.
 - Out-of-Band data transfer.
 - TLS – Transport Layer Security, also known as SSLv3.1, is very similar to SSLv3, but improves upon SSLv3 in the ways shown in **Differences between SSL and TLS**:

Differences between SSL and TLS

<table>
<thead>
<tr>
<th></th>
<th>SSL</th>
<th>TLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uses a preliminary HMAC algorithm</td>
<td>Uses HMAC as described in RFC 2104</td>
</tr>
<tr>
<td></td>
<td>Does not apply MAC to version info</td>
<td>Applies MAC to version info</td>
</tr>
</tbody>
</table>
Differences between SSL and TLS

<table>
<thead>
<tr>
<th>SSL</th>
<th>TLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not specify a padding value</td>
<td>Initializes padding to a specific value</td>
</tr>
<tr>
<td>Limited set of alerts and warning</td>
<td>Detailed Alert and Warning messages</td>
</tr>
</tbody>
</table>

NOTE: SonicOS 6.2.2.1 and above support TLS 1.1 and 1.2.

- **MAC** – A MAC (Message Authentication Code) is calculated by applying an algorithm (such as MD5 or SHA1) to data. The MAC is a message digest, or a one-way hash code that is fairly easy to compute, but which is virtually irreversible. In other words, with the MAC alone, it would be theoretically impossible to determine the message upon which the digest was based. It is equally difficult to find two different messages that would result in the same MAC. If the receiver’s MAC calculation matches the sender’s MAC calculation on a given piece of data, the receiver is assured that the data has not been altered in transit.

- **Client Hello** – The first message sent by the client to the server following TCP session establishment. This message starts the SSL session, and consists of the following components:
 - **Version** – The version of SSL that the client wishes to use in communications. This is usually the most recent version of SSL supported by the client.
 - **Random** – A 32-bit timestamp coupled with a 28-byte random structure.
 - **Session ID** – This can either be empty if no Session ID data exists (essentially requesting a new session) or can reference a previously issued Session ID.
 - **Cipher Suites** – A list of the cryptographic algorithms, in preferential order, supported by the clients.
 - **Compression Methods** – A list of the compression methods supported by the client (typically null).

- **Server Hello** – The SSL server’s response to the Client Hello. It is this portion of the SSL exchange that SSL Control inspects. The Server Hello contains the version of SSL negotiated in the session, along with cipher, session ID and certificate information. The actual X.509 server certificate itself, although a separate step of the SSL exchange, usually begins (and often ends) in the same packet as the Server Hello.

- **Certificates** - X.509 certificates are unalterable digital stamps of approval for electronic security. There are four main characteristics of certificates:
 - Identify the subject of a certificate by a common name or distinguished name (CN or DN).
 - Contain the public key that can be used to encrypt and decrypt messages between parties
 - Provide a digital signature from the trusted organization (Certificate Authority) that issued the certificate.
 - Indicate the valid date range of the certificate.

- **Subject** – The guarantee of a certificate identified by a common name (CN). When a client browses to an SSL site, such as https://www.mysonicwall.com, the server sends its certificate which is then evaluated by the client. The client checks that the certificate’s dates are valid, that is was issued by a trusted CA, and that the subject CN matches the requested host name (that is, they are both www.mysonicwall.com). Although a subject CN mismatch elicits a browser alert, it is not always a sure sign of deception. For example, if a client browses to https://mysonicwall.com, which resolves to the same IP address as www.mysonicwall.com, the server presents its certificate bearing the subject CN of www.mysonicwall.com. An alert will be presented to the client, despite the total legitimacy of the connection.
• **Certificate Authority (CA)** - A Certificate Authority (CA) is a trusted entity that has the ability to sign certificates intended, primarily, to validate the identity of the certificate's subject. Well-known certificate authorities include VeriSign, Thawte, Equifax, and Digital Signature Trust. In general, for a CA to be trusted within the SSL framework, its certificate must be stored within a trusted store, such as that employed by most Web-browsers, operating systems and run-time environments. The SonicOS trusted store is accessible from the System > Certificates page. The CA model is built on associative trust, where the client trusts a CA (by having the CA's certificate in its trusted store), the CA trusts a subject (by having issued the subject a certificate), and therefore the client can trust the subject.

• **Untrusted CA** – An untrusted CA is a CA that is not contained in the trusted store of the client. In the case of SSL Control, an untrusted CA is any CA whose certificate is not present in System > Certificates.

• **Self-Signed Certificates** – Any certificate where the issuer's common-name and the subject's common-name are the same, indicating that the certificate was self-signed.

• **Virtual Hosting** – A method employed by Web servers to host more than one website on a single server. A common implementation of virtual hosting is name-based (Host-header) virtual hosting, which allows for a single IP address to host multiple websites. With Host-header virtual hosting, the server determines the requested site by evaluating the “Host:” header sent by the client. For example, both www.website1.com and www.website2.com might resolve to 64.41.140.173. If the client sends a “GET /” along with “Host: www.website1.com”, the server can return content corresponding to that site. Host-header virtual hosting is generally not employed in HTTPS because the host header cannot be read until the SSL connection is established, but the SSL connection cannot be established until the server sends its Certificate. Since the server cannot determine which site the client will request (all that is known during the SSL handshake is the IP address) it cannot determine the appropriate certificate to send. While sending any certificate might allow the SSL handshake to commence, a certificate name (subject) mismatch will trigger a browser alert.

• **Weak Ciphers** – Relatively weak symmetric cryptography ciphers. Ciphers are classified as weak when they are less than 64 bits. For the most part, export ciphers are weak ciphers. Common weak ciphers lists common weak ciphers:

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Encryption</th>
<th>Occurs in</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP1024-DHE-DSS-DES-CBC-SHA</td>
<td>DES(56)</td>
<td>SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EXP1024-DHE-CBC-SHA</td>
<td>DES(56)</td>
<td>SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EXP1024-RC2-CBC-MD5</td>
<td>RC2(56)</td>
<td>SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EDH-RSA-DES-CBC-SHA</td>
<td>DES(56)</td>
<td>SSLv3, TLS</td>
</tr>
<tr>
<td>EDH-DSS-DES-CBC-SHA</td>
<td>DES(56)</td>
<td>SSLv3, TLS</td>
</tr>
<tr>
<td>DES-CBC-SHA</td>
<td>DES(56)</td>
<td>SSLv2, SSLv3, TLS</td>
</tr>
<tr>
<td>EXP1024-DHE-DSS-RC4-SHA</td>
<td>RC4(56)</td>
<td>SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EXP1024-RC4-SHA</td>
<td>RC4(56)</td>
<td>SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EXP1024-RC4-MD5</td>
<td>RC4(56)</td>
<td>SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EXP-EDH-RSA-DES-CBC-SHA</td>
<td>DES(40)</td>
<td>SSLv3, TLS</td>
</tr>
<tr>
<td>EXP-EDH-DSS-DES-CBC-SHA</td>
<td>DES(40)</td>
<td>SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EXP-DES-CBC-SHA</td>
<td>DES(40)</td>
<td>SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EXP-RC2-CBC-MD5</td>
<td>RC2(40)</td>
<td>SSLv2, SSLv3, TLS (export)</td>
</tr>
<tr>
<td>EXP-RC4-MD5</td>
<td>RC4(40)</td>
<td>SSLv2, SSLv3, TLS (export)</td>
</tr>
</tbody>
</table>
Caveats and Advisories

1. **Self-signed and Untrusted CA enforcement** – If enforcing either of these two options, it is strongly advised that you add the common names of any SSL secured network appliances within your organization to the whitelist to ensure that connectivity to these devices is not interrupted. For example, the default subject name of a SonicWall network security appliance is 192.168.168.168, and the default common name of SonicWall SSL VPN appliances is 192.168.200.1.

2. If your organization employs its own private Certificate Authority (CA), it is strongly advised that you import your private CA’s certificate into the System > Certificates store, particularly if you will be enforcing blocking of certificates issued by untrusted CAs. Refer to SonicWall SonicOS 6.5 System Setup for more information on this process.

3. SSL Control inspection is currently only performed on TCP port 443 traffic. SSL negotiations occurring on non-standard ports will not be inspected at this time.

4. **Server Hello fragmentation** – In some rare instances, an SSL server fragments the Server Hello. If this occurs, the current implementation of SSL Control does not decode the Server Hello. SSL Control policies are not applied to the SSL session, and the SSL session is allowed.

5. **Session termination handling** – When SSL Control detects a policy violation and terminates an SSL session, it simply terminates the session at the TCP layer. Because the SSL session is in an embryonic state at this point, it is not currently possible to redirect the client or to provide any kind of informational notification of termination to the client.

6. **Whitelist precedence** – The whitelist takes precedence over all other SSL Control elements. Any SSL server certificate which matches an entry in the whitelist will allow the SSL session to proceed, even if other elements of the SSL session are in violation of the configured policy. This is by design.

7. The number of pre-installed (well-known) CA certificates is 93. The resulting repository is very similar to what can be found in most Web-browsers. Other certificate related changes:
 a. The maximum number of CA certificates was raised from 6 to 256.
 b. The maximum size of an individual certificate was raised from 2,048 to 4,096.
 c. The maximum number of entries in the whitelist and blacklist is 1,024 each.

SSL Control Configuration

NOTE: Before configuring SSL Control, ensure your firewall supports IPv6. You can confirm this by using the IPv6 Check Network Settings tool on the System > Diagnostics page; see SonicWall SonicOS 6.5 Investigation.

SSL Control is located on the MANAGE view, under Security Configuration | Firewall Settings > SSL Control. SSL Control has a global setting, as well as a per-zone setting. By default, SSL Control is not enabled at the global or zone level. The individual page controls are as follows (refer Key Concepts to SSL Control for more information on terms used in this section).
General Settings

The **General Settings** section allows you to enable or disable SSL control:

- **Enable SSL Control** – The global setting for SSL Control. This must be enabled for SSL Control applied to zones to be effective. This option is not selected by default.

Action

The **Action** section is where you specify the action to be taken when an SSL policy violation is detected; either:

- **Log the event** – If an SSL policy violation, as defined within the **Configuration** section below, is detected, the event is logged, but the SSL connection is allowed to continue. This option is not selected by default.

- **Block the connection and log the event** – In the event of a policy violation, the connection is blocked and the event is logged. This option is selected by default.

Configuration

The **Configuration** section is where you specify the SSL policies to be enforced:

- **Enable Blacklist** – Controls detection of the entries in the blacklist, as configured in the **Custom Lists**. This option is selected by default.
• **Enable Whitelist** – Controls detection of the entries in the whitelist, as configured in the **Configure Lists** section below. Whitelisted entries take precedence over all other SSL control settings. This option is selected by default.

• **Detect Expired Certificates** – Controls detection of certificates whose start date is before the current system time, or whose end date is beyond the current system time. Date validation depends on the firewall’s System Time. Make sure your System Time is set correctly, preferably synchronized with NTP, on the **System > Time** page. This option is not selected by default.

• **Detect Incomplete Certificates** – Controls detection of certificates that contain incomplete information. This option is not selected by default.

• **Detect Weak Ciphers (<64 bits)** – Controls the detection of SSL sessions negotiated with symmetric ciphers less than 64 bits, commonly indicating export cipher usage. This option is not selected by default.

• **Detect Weak Digest Certificates** – Controls detection of certificates created using MD5 or SHA1. Both MD5 or SHA1 are not considered safe. This option is not selected by default.

• **Detect Self-Signed Certificates** – Controls the detection of certificates where both the issuer and the subject have the same common name. This option is selected by default.

It is common practice for legitimate sites secured by SSL to use certificates issued by well-known certificate authorities, as this is the foundation of trust within SSL. It is almost equally common for network appliances secured by SSL (such as SonicWall security appliances) to use self-signed certificates for their default method of security. So while self-signed certificates in closed-environments are not suspicious, the use of self-signed certificates by publicly or commercially available sites is. A public site using a self-signed certificate is often an indication that SSL is being used strictly for encryption rather than for trust and identification. While not absolutely incriminating, this sometimes suggests that concealment is the goal, as is commonly the case for SSL encrypted proxy sites. The ability to set a policy to block self-signed certificates allows you to protect against this potential exposure. To prevent discontinuity of communications to known/trusted SSL sites using self-signed certificates, use the blacklist feature for explicit allowance.

• **Detect Certificates signed by an Untrusted CA** – Controls the detection of certificates where the issuer’s certificate is not in the firewall’s **System > Certificates** trusted store. This option is selected by default.

Similar to the use of self-signed certificates, encountering a certificate issued by an untrusted CA is not an absolute indication of disreputable obscuration, but it does suggest questionable trust. SSL Control can compare the issuer of the certificate in SSL exchanges against the certificates stored in the SonicWall firewall where most of the well-known CA certificates are included. For organizations running their own private certificate authorities, the private CA certificate can easily be imported into the SonicWall’s whitelist to recognize the private CA as trusted.

• **Detect SSLv2** – Controls detection and blocking of SSLv2 exchanges. SSLv2 is known to be susceptible to cipher downgrade attacks because it does not perform integrity checking on the handshake. Best practices recommend using SSLv3 or TLS in its place. This option is not selected by default.

• **Detect SSLv3** – Controls detection and blocking of SSLv3 exchanges. This option is not selected by default.

• **Detect TLSv1** – Controls the detection and blocking of TLSv1 exchanges. This option is not selected by default.

Custom Lists

The **Custom Lists** section allows you to configure custom whitelists and blacklists.

• **Configure Blacklist and Whitelist** – Allows you to define strings for matching common names in SSL certificates. Entries are case-insensitive and are used in pattern-matching fashion, as shown in **Blacklist and Whitelist: pattern matching:**
To configure the Whitelist and Blacklist:

1. Navigate to the Security Configuration | Firewall Settings > SSL Control page.
2. Click the Configure button. The SSL Control Custom Lists dialog displays.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Will Match</th>
<th>Will Not Match</th>
</tr>
</thead>
</table>

1. 67.115.118.67 is currently the IP address to which sslvpn.demo.sonicwall.com resolves, and that site uses a certificate issued to sslvpn.demo.sonicwall.com. This will result in a match to “sonicwall.com” since matching occurs based on the common name in the certificate.

2. This is the decimal notation for the IP address 63.208.219.44, whose certificate is issued to www.megaproxy.com.

3. www.freeproxy.ru will not match “prox” since the common name on the certificate that is currently presented by this site is a self-signed certificate issued to “-”. This can, however, easily be blocked by enabling control of self-signed or Untrusted CA certificates.

NOTE:
List matching is based on the subject common name in the certificate presented in the SSL exchange, not in the URL (resource) requested by the client.

You can edit and delete certificates with the buttons beneath each list table.

5. Click OK.
Changes to any of the SSL Control settings do not affect currently established connections; only new SSL exchanges that occur after the change is committed are inspected and affected.

6 Click OK.

7 Click Accept.

Enabling SSL Control on Zones

After SSL Control has been globally enabled, and the desired options have been configured, SSL Control must be enabled on one or more zones. When SSL Control is enabled on the zone, the firewall looks for Client Hellos sent from clients on that zone through the firewall will trigger inspection. The firewall then looks for the Server Hello and Certificate that is sent in response for evaluation against the configured policy. Enabling SSL Control on the LAN zone, for example, will inspect all SSL traffic initiated by clients on the LAN to any destination zone.

NOTE: If you are activating SSL Control on a zone (for example, the LAN zone) where there are clients who will be accessing an SSL server on another zone connected to the firewall (for example, the DMZ zone), it is recommended that you add the subject common name of that server’s certificate to the whitelist to ensure continuous trusted access.

To enable SSL Control on a zone:

1. Navigate to the System Setup | Network > Zones page.
2. Select the Configure icon for the desired zone. The Edit Zone dialog displays.
3. Select the Enable SSL Control checkbox.
4. Click OK. All new SSL connections initiated from that zone are now subject to inspection.

SSL Control Events

Log events include the client’s username in the notes section (not shown) if the user logged in manually or was identified through CIA/Single Sign On. If the user’s identity is not available, the note indicates the user is Unidentified.

SSL control: Event messages

<table>
<thead>
<tr>
<th>#</th>
<th>Event Message</th>
<th>Conditions When it Occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SSL Control: Certificate with Invalid date</td>
<td>The certificate’s start date is either before the SonicWall’s system time or it’s end date is after the system time.</td>
</tr>
<tr>
<td>2</td>
<td>SSL Control: Certificate chain not complete</td>
<td>The certificate has been issued by an intermediate CA with a trusted top-level CA, but the SSL server did not present the intermediate certificate. This log event is informational and does not affect the SSL connection.</td>
</tr>
</tbody>
</table>
| 3 | SSL Control: Self-signed certificate | The certificate is self-signed (the CN of the issuer and the subject match).
NOTE: For information about enforcing self-signed certificate controls, see Caveats and Advisories. |
| 4 | SSL Control: Untrusted CA | The certificate has been issued by a CA that is not in the System > Certificates store of the firewall.
NOTE: For information about enforcing self-signed certificate controls, see Caveats and Advisories. |
SSL control: Event messages

<table>
<thead>
<tr>
<th>#</th>
<th>Event Message</th>
<th>Conditions When it Occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SSL Control: Website found in blacklist</td>
<td>The common name of the subject matched a pattern entered into the blacklist.</td>
</tr>
<tr>
<td>6</td>
<td>SSL Control: Weak cipher being used</td>
<td>The symmetric cipher being negotiated was fewer than 64 bits. For a list of weak ciphers, see Common weak ciphers.</td>
</tr>
<tr>
<td>7</td>
<td>See #2</td>
<td>See #2.</td>
</tr>
<tr>
<td>8</td>
<td>SSL Control: Failed to decode Server Hello</td>
<td>The Server Hello from the SSL server was undecipherable. Also occurs when the certificate and Server Hello are in different packets, as is the case when connecting to a SSL server on a SonicWall appliance. This log event is informational, and does not affect the SSL connection.</td>
</tr>
<tr>
<td>9</td>
<td>SSL Control: Website found in whitelist</td>
<td>The common name of the subject (typically a website) matched a pattern entered into the Whitelist. Whitelist entries are always allowed, even if there are other policy violations in the negotiation, such as SSLv2 or weak ciphers.</td>
</tr>
<tr>
<td>10</td>
<td>SSL Control: HTTPS via SSLv2</td>
<td>The SSL session was being negotiated using SSLv2, which is known to be susceptible to certain man-in-the-middle attacks. Best practices recommend using SSLv3 or TLS instead.</td>
</tr>
</tbody>
</table>
Part 2

Security Services

- Managing SonicWall Security Services
- Configuring Content Filtering Service
- DPI-SSL Enforcement
- Activating SonicWall Client Anti-Virus
- Configuring Client CF Enforcement
- Managing SonicWall Gateway Anti-Virus Service
- Activating Intrusion Prevention Service
- Viewing Capture ATP Status
- Configuring Capture ATP
- Activating Anti-Spyware Service
- Configuring SonicWall Real-Time Blacklist
- Configuring Geo-IP Filters
- Configuring Botnet Filters
Managing SonicWall Security Services

- SonicWall Security Services
- Configuring Security Services

SonicWall Security Services

SonicWall offers a variety of subscription-based security services to provide layered security for your network. SonicWall security services are designed to integrate seamlessly into your network to provide complete protection.

The following subscription-based security services are listed in Security Services on the firewall’s management interface:

- SonicWall Content Filtering Service
- SonicWall Client Anti-Virus
- SonicWall Gateway Anti-Virus
- SonicWall Intrusion Prevention Service
- SonicWall Anti-Spyware
- SonicWall RBL Filter
- SonicWall Geo-IP Filter
- SonicWall Botnet Filter

TIP: After you register your firewall, you can try FREE TRIAL versions of SonicWall Content Filtering Service, SonicWall Client Anti-Virus, SonicWall Gateway Anti-Virus, SonicWall Intrusion Prevention Service, and SonicWall Anti-Spyware.

You can activate and manage SonicWall security services directly from the SonicWall management interface or from https://www.mysonicwall.com.

Configuring Security Services

The following sections describe global configurations that are done on the panels of the Security Services > Base Setup page:

- Synchronize Licenses
- Security Services Settings
- Signature Downloads and Registration Through a Proxy Server
- Security Services Information
- Update Signature Manually
Synchronize Licenses

To synchronize your mysonicwall.com account with the Security Services Summary table, click the Synchronize button after Synchronize licenses with www.mysonicwall.com.

To manage your licenses, click the link in To Manage your licenses go to www.mysonicwall.com.

Security Services Settings

The Security Services Settings section provides the following options for fine-tuning SonicWall security services:

- **Security Services Settings** - This drop-down menu specifies whether SonicWall security services are applied to maximize security or to maximize performance:
 - **Maximum Security (Recommended)** - Inspect all content with any threat probability (high/medium/low). For additional performance capacity in this maximum security setting, utilize SonicOS DPI Clustering.
 - **Performance Optimized** - Inspect all content with a high or medium threat probability. Consider this performance optimized security setting for bandwidth/CPU intensive gateway deployments or utilize SonicOS DPI Clustering.

The **Maximum Security** setting provides maximum protection. The **Performance Optimized** setting utilizes knowledge of the currently known threats to provide high protection against active threats in the threat landscape.

- **Reduce Anti-Virus traffic for ISDN connections** - Select this feature to enable the SonicWall Anti-Virus to check only once a day (every 24 hours) for updates and reduce the frequency of outbound traffic for users who do not have an “always on” Internet connection.

- **Drop all packets while IPS, GAV and Anti-Spyware database is reloading** - Select this option to instruct the firewall to drop all packets whenever the IPS, GAV, and Anti-Spyware database is updating.

- **HTTP Clientless Notification Timeout for Gateway AntiVirus and AntiSpyware (sec) 86400** - Set the timeout duration after which the firewall notifies users when GAV or Anti-Spyware detects an incoming threat from an HTTP server. The default timeout is one day (86400 seconds).
Signature Downloads and Registration Through a Proxy Server

This section provides the ability for SonicWall network security appliances that operate in networks where they must access the Internet through a proxy server to download signatures. This feature also allows for registration of SonicWall network security appliances through a proxy server without compromising privacy.

To enable signature download or appliance registration through a proxy server:

1. Select the Download Signatures through a Proxy Server checkbox.
2. In the Proxy Server Name or IP Address field, enter the host name or IP address of the proxy server.
3. In the Proxy Server Port field, enter the port number used to connect to the proxy server.
4. Select the This Proxy Server requires Authentication checkbox if the proxy server requires a username and password.
5. If the appliance has not been registered with MySonicWall.com, two additional fields are displayed:
 - **MySonicWall Username** - Enter the username for the mysonicwall.com account that the appliance is to be registered to.
 - **MySonicWall Password** - Enter the mysonicwall.com account password.
6. Click Accept at the top of the page.

Security Services Information

This panel is not currently used.

Update Signature Manually

The Manual Signature Update feature is intended for networks where reliable, broadband Internet connectivity is either not possible or not desirable (for security reasons). The Manual Signature Update feature provides a method to update the latest signatures at the network administrator’s discretion. The network administrator first downloads the signatures from http://www.mysonicwall.com to a separate computer, a USB drive, or other media. Then the network administrator uploads the signatures to the firewall. The same signature update file can be used on all SonicWall network security appliances that meet these requirements:

- Devices that are registered to the same mysonicwall.com account
- Devices that belong to the same class of SonicWall network security appliances.
To manually update signature files, complete the following steps:

1. On the Security Services > Summary page, scroll to the Update Signatures Manually heading at the bottom of the page. Record the Signature File ID for the device.

 ![Update signatures manually](image)

 - **Step 1:** If you work in a closed environment or prefer to update signatures manually, please download signature updates from www.mysonicwall.com to your disk, then import the file.
 - **Signature File ID:**
 - **Import Signatures**

2. Log on to http://www.mysonicwall.com using the mysonicwall.com account that was used to register the SonicWall network security appliance.

 ![Download Signatures](image)

 - **NOTE:** The signature file can only be used on firewalls that are registered to the mysonicwall.com account that downloaded the signature file.

3. Click on Download Signatures under the Downloads heading.

4. In the pull down window next to Signature ID, select the appropriate SFID for your firewall.

5. Download the signature update file by clicking on Click here to download the Signature file.

 - **NOTE:** The remaining steps can be performed while disconnected from the Internet.

7. Click the Import Signatures button.

8. In pop-up dialog that appears, click the browse button and navigate to the location of the signature update file.

9. Click Import. The signatures are uploaded for the security services that are enabled on the firewall.
Configuring Content Filtering Service

You can activate Content Filter Objects and configure SonicWall Content Filtering Service (SonicWall CFS) as well as Websense Enterprise, a third-party Content Filtering product, from the Security Configuration | Security Services > Content Filter page.

Topics:
- About CFS
- Enabling CFS
- Enabling the Local CFS Server
- Configuring CFS Custom Categories

NOTE: Content Filtering Service (CFS) content is not supported in Wire Mode.
About CFS

The SonicWall™ Content Filtering Service (CFS) delivers content filtering enforcement for educational institutions, businesses, libraries, and government agencies. With content filter objects, you can control the websites students and employees can access using their IT-issued computers while behind the organization's firewall.

NOTE: For more a detailed description of CFS, as well as how to license and install it, see the SonicWall SonicOS 6.5 Release Notes, the SonicWall™ Content Filtering Service Feature Guide, and the SonicWall™ Content Filtering Service Upgrade Guide. Also, for how to create Content Filter Objects for CFS policies, see SonicWall SonicOS 6.5 Policies.

CFS compares requested websites against a massive cloud database that contains millions of rated URLs, IP addresses, and websites. It also provide you with the tools to create and apply policies that allow or deny access to sites based on individual or group identity and/or by time of day.

Topics:

- About CFS Policies
- About Content Filter Objects
- How CFS Works

About Threat API

IMPORTANT: Before configuring Threat API, you must enable it. For further information about Threat API and how to enable it, see the Threat API Reference Manual.

NOTE: SonicOS Threat API requires that the firewall has a Content Filtering System (CFS) license.

SonicOS 6.5 introduces support for the Threat API feature. The SonicOS Threat API provides API access to SonicWall firewall services. Compared with current firewall GUI/CLI user interfaces, Threat API is simple and makes good use of the standard HTTP protocol. With the trend toward cloud deployment, Threat API can more easily be used than traditional SonicOS GUI/CLI.

Malicious threats can originate from URLs or IP addresses. Lists of these threats can be large and change frequently. SonicOS can already block custom lists of URLs and IP addresses, but it’s inconvenient because you have to log in and update the lists by hand. Using an API interface makes it much easier.

The Threat list is sent to SonicOS using the Threat API feature. Threats can be added in either of the following formats:

- **URLs** (https://malicious123.example.com/malware)
- **IP addresses** (10.10.1.25)

Third parties can generate the threat list and pass it to the firewall using Threat API.

For IP addresses in the threat list, SonicOS initially creates a default Threat API Address Group and then creates an Address Object (AO) for each IP address in the threat list. The you configure Firewall Access Rules that reference that Address Group and block the IP addresses.

SonicOS adds the URLs to its CFS Threat URI list. You enable Threat API Enforcement in the associated CFS Profile and configure a Content Filtering System (CFS) policy to block the URLs in the threat list. When a threat is blocked by CFS, the user sees a block message in their browser.

NOTE: For more a detailed description of CFS, as well as how to license and install it, see the SonicWall SonicOS 6.5 Release Notes, the SonicWall™ Content Filtering Service Feature Guide, and the SonicWall™ Content Filtering Service Upgrade Guide. Also, for how to create Content Filter Objects for CFS policies, see SonicWall SonicOS 6.5 Policies.

IMPORTANT: Before configuring Threat API, you must enable it. For further information about Threat API and how to enable it, see the Threat API Reference Manual.

NOTE: SonicOS Threat API requires that the firewall has a Content Filtering System (CFS) license.
About CFS Policies

A CFS policy determines whether a packet is filtered (by applying the configured CFS Action) or simply allowed through to the user. A CFS policy defines the filtering conditions to which a packet is compared:

- Name
- Source Zone
- Destination Zone
- Source Address
- User/Group
- Schedule

If a packet matches all the defined conditions, the packet is filtered according to the corresponding CFS Profile, and the CFS Action is applied.

NOTE: If authentication data for User/Group is not available during matching, no match is made for this condition. This strategy prevents performance issues, especially when Single Sign-On is in use.

Each CFS policy has a priority level, and policies with higher priorities are checked first.

CFS uses a policy table internally to manage all the configured policies. For each policy element, the table is constructed by the configuration data and runtime data. The configuration data includes parameters that define the policy from the user interface, such as policy name, properties and others. The runtime data includes the parameters used for packet handling.

CFS also uses a policy lookup table to accelerate runtime policy lookup for matching conditions:

- Source zone
- Destination zone
- IPv4 AO
- IPv6 AO

About Content Filter Objects

CFS uses Content Filter Objects in CFS Policies to identify URIs and domains for filtering and to specify the type of action to be taken when filtering. For more information about Content Filter Objects, see SonicWall SonicOS 6.5 Policies.

Under the CFS rating design, a domain may be resolved to one of four ratings; from highest to lowest priority, the ratings are:

1. Block
2. Passphrase
3. Confirm
4. BWM (bandwidth management)

If the URL is not categorized into any of these ratings, then the operation will be allowed.
How CFS Works

1. A packet arrives and is examined by CFS.
2. CFS checks it against the configured exclusion addresses and allows it through if a match is found.
3. CFS checks its policies to find the first policy that matches these conditions in the packet:
 - Source zone
 - Destination zone
 - Address object
 - Users/group
 - Schedule
 - Enabled state
4. CFS uses the CFS Profile defined in the matching policy to do the filtering and returns the corresponding action for this packet.
 NOTE: If no policy is matched, the packet is passed through without any action by CFS.
5. CFS performs the action defined in the CFS Action Object for the matching policy.

CFS Blocking of Individual Videos

SonicWall Content Filtering Service (CFS) can selectively filter and block individual YouTube videos.

NOTE: SonicWall CFS can only block specific YouTube videos. It cannot block categories of videos. This feature only works if the SonicWall CFS server already has a rating for the specific video identified in the “v=” parameter of the URI. Each video URI to be blocked must be added individually to SonicWall CFS.

This feature is not supported when a local CFS server; only when using the SonicWall public CFS server. This is due to a conflict with the blacklist/whitelist feature in the local CFS server.

No SonicOS configuration is required to use this feature.

About CFS Logs

In Logs & Reporting > Log Settings > Base Setup, a new subcategory, Content Filter, has been added to the Security Services category. This new subcategory lists these logs:

- CFS Alert
- Website Accessed
- Website Blocked

For information about configuring these logs, see SonicWall SonicOS 6.5 Logs and Reporting.
Enabling CFS

To enable CFS:

1. Navigate to the Security Configuration | Security Services > Content Filter page.
2. Choose the content filtering service from the Content Filter Type drop-down menu:
 - SonicWall CFS (default)
 - Websense Enterprise
3. In the Global Settings section, specify the maximum URL entries that can be cached in the Max URL Caches (entries) field. The default is 51200.
 The URL rating is saved with a cached URL entry, which speeds processing of known URLs.
4. To enable content filter for all packets, select the Enable Content Filtering Service checkbox. This option is selected by default. To bypass content filtering for all packets, deselect this option.
5. To enable content filtering for HTTPS sites, select the Enable HTTPS content filtering checkbox. This option is not selected by default.
 When this option is enabled, CFS performs URL rating look up in this order:
 a. Searches the client hello for the Server Name, which CFS uses to obtain the URL rating.
 b. If the Server Name is not available, searches the SSL certificate for the Common Name, which CFS uses to obtain the URL rating.
 c. If neither Server Name nor Common Name is available, CFS uses the IP address to obtain the URL rating.
6. To limit the time for obtaining a rating request when filtering, select the Block if CFS Server Is Unavailable checkbox. This option is not selected by default.
 a. When this option is selected, the Server Timeout field becomes available. Enter the maximum time, in seconds, the CFS service has to respond to rating requests. The minimum is 2 seconds, the maximum is 10 seconds, and the default is 5 seconds.
7. To bypass content filtering for all requests from an account with administrator privileges, select the Exclude Administrator checkbox. This option is selected by default.
8. To bypass content filtering for all requests from a category of address objects, choose the address object from the Excluded Address drop-down menu. The default is None. You can also create a new address object by choosing Create new address object; for information about creating an address object, see SonicWall SonicOS 6.5 Policies.
9. Click Accept.

Enabling the Local CFS Server

The Local CFS Responder (Local CFS) allows the Content Filtering Service to receive URL ratings directly from a local responder, rather than from a remote public responder. For information on configuring and using Local CFS, see the Local CFS Administration Guide.
To enable the Local CFS Responder:

1. Navigate to the Security Configuration | Security Services > Content Filter page.
2. Scroll down to the Global Settings section.
3. Select Enable Local CFS Server.
4. Enter the IP addresses for the primary and secondary local CFS servers in the Primary Local CFS Server and Secondary Local CFS Server fields.
5. Mousing over the Statistics icon to the right of the Primary Local CFS Server field will display information about the server entered.
6. Click Accept.

Configuring CFS Policies

To add, edit, or delete CFS policies, go to the Policies > Objects > Content Filter Objects page. For more information, see “Configuring Content Filter Objects” in SonicWall SonicOS 6.5 Policies.

Configuring CFS Custom Categories

This section describes the CFS Custom Category table and provides instructions for configuring, editing, and deleting CFS custom categories. Importing and exporting the custom category table are also described.

Topics:

- About the CFS Custom Category Table
- Configuring a CFS Custom Category
- Exporting the CFS Custom Category Table
- Importing a CFS Custom Category Table
- Editing a CFS Custom Category
- Deleting CFS Custom Categories
About the CFS Custom Category Table

<table>
<thead>
<tr>
<th>CFS Custom Category</th>
<th>Lookup Domains Containing String:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable CFS Custom Category</td>
<td>Delete All</td>
</tr>
<tr>
<td>Add</td>
<td>Delete</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Domain</th>
<th>Categories</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0.0.128</td>
<td>Online Shopping</td>
<td>Delete All</td>
</tr>
<tr>
<td>2</td>
<td>10.0.0.129</td>
<td>Online Banking</td>
<td>Edit Delete</td>
</tr>
<tr>
<td>3</td>
<td>192.168.168.168</td>
<td>Live Music</td>
<td>Edit Delete</td>
</tr>
<tr>
<td>4</td>
<td>fe80::c2ea:e44ff:fe59:a634</td>
<td>Online Gaming</td>
<td>Edit Delete</td>
</tr>
</tbody>
</table>

Domain: IP address of the domain to which the custom category applies.
Categories: Categories selected for the custom category.
Configure: Displays the Edit and Delete icons for each domain.

Searching the CFS Custom Category Table

You can search a long table for a specific IP address by:

1. Entering an IP address in the Lookup Policies by Address field. The IP address can be in either format:
 - 192.168.168.168
 - fe80::c2ea:e4ff:fe59:a634
2. Clicking the Search (magnifying glass) icon.

Requesting a Rating Review

If you believe that a web site is rated incorrectly or you wish to submit a new URL, you submit a request to the SonicWall Content Filtering Service by:

- Clicking on the link at the top of the Security Services > Content Filter page, if you believe that a Web site is rated incorrectly or you wish to submit a new URL, click here.

The CFS URI Rating Review Request form displays.
Configuring a CFS Custom Category

You can customize ratings for certain URLs. Up to 5,000 valid entries are supported. Custom categories are processes like those categories provided by the backend server. When CFS checks the ratings for one URL, it checks the user rating first and then the rating from the backend server. CFS categories are managed and built dynamically using configuration strings passed from the backend server.

Topics:
- Enabling Custom Categories
- Configuring a Custom Category

Enabling Custom Categories

Before you can use custom categories, you must enable the service.

To enable custom categories:

2. Select the Enable CFS Custom Category checkbox. This option is not selected by default.

3. Click Accept.

Configuring a Custom Category

To define a custom category:

2 Click Add. The CFS Custom Category dialog displays.

![CFS Custom Category dialog](image)

3 In the Domain field, enter the IP address or domain name of the domain for which the custom category applies:
 - The IP address can be either of these formats:
 - 192.168.168.168
 - fe80::c2ea:e4ff:fe59:a634
 - Omit the www. prefix for a domain name. If you include it, a confirmation message displays; when you click OK, the prefix is removed from the domain name in the Domain field:

![Confirmation message](image)

4 Select up to four categories from the list.
5 Click Add.
6 To create more CFS custom categories, repeat Step 3 through Step 5 for each policy.
 - **NOTE:** Each custom category you create is a separate entry in the CFS Custom Category table; they are not concatenated.
7 Click Close. The CFS Custom Category table is updated.
Exporting the CFS Custom Category Table

You can export the CFS Custom Category table to a .wri file you can edit and save for importing.

To export the CFS Custom Category table:

2. Click Export. The Opening cfsCustomCategoryData.wri dialog displays.
3. You can either open the file (default program is Notepad) or save it. If you:
 - Open the file.
 - Save the file, it is downloaded to your Downloads folder with the file name, cfsCustomCategoryData.wri; new line characters are added after each entry.

 NOTE: The file consists of all the CFS Custom Category table entries, all on one line.
4. Click OK.

Importing a CFS Custom Category Table

You can import a file of CFS Custom Category table entries. The entries in this file will overwrite the existing entries in the table.

The file should contain entries in this format:

```
DomainName/IPAddress: Rating[1, Rating2, Rating3, Rating4] Separator
```

<table>
<thead>
<tr>
<th>Token</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DomainName</td>
<td>A domain name, such as SonicWall. If you include the www prefix, it is ignored.</td>
</tr>
<tr>
<td>IPAddress</td>
<td>A standard or IPv6 IP address, such as:</td>
</tr>
<tr>
<td></td>
<td>• 192.168.168.168</td>
</tr>
<tr>
<td></td>
<td>• fe80::c2ea:e4ff:fe59:a634</td>
</tr>
</tbody>
</table>
To import a custom category table:

1. Navigate to Security Configuration | Security Services > Content Filter | CFS Custom Category.

2. Click Import. A confirmation dialog displays.

 All current entries in the CFS Custom Category table are replaced with the entries in the file. Any entries you want to keep should be in the file.

 TIP: Export the CFS Custom Category table and make any changes to the exported file before importing table entries.

3. Click OK.

Editing a CFS Custom Category

To edit a CFS custom category:

1. Click the Edit icon for the CFS custom category to be edited. The CFS Custom Category dialog displays.

2. To make your changes, follow the appropriate procedures in Configuring a CFS Custom Category.
Deleting CFS Custom Categories

To delete CFS custom categories:

1. Do one of these:
 - Click the **Delete** icon for the CFS custom categories to be deleted.
 - Click the checkbox for one or more CFS custom categories to be deleted. The **Delete** button becomes active; click it.

 A confirmation message displays.

 ![Confirmation Message]

2. Click **OK**.

To delete all CFS custom categories:

1. Click the **Delete All** button.

 ![Confirmation Message]

2. Click **OK**. All CFS custom categories are deleted.
DPI-SSL Enforcement

When you enable the DPI-SSL services on your SonicWall network security appliance, the clients behind the firewalls that have no related certificates are often required to confirm by going through HTTPS web pages. Otherwise, users have to install the corresponding DPI-SSL certificates manually if they want to bypass this step by downloading the corresponding certificate, and then installing it.

In order to simplify the procedure so that clients can download and install the certificates automatically, DPI-SSL enforcement is necessary.

Topics:
- DPI-SSL Enforcement Status
- DPI-SSL Enforcement
- Managing DPI-SSL Enforcement
DPI-SSL Enforcement Status

The DPI-SSL Enforcement Status section shows the licensing status of the DPI-SSL Enforcement Status feature.

<table>
<thead>
<tr>
<th>Status</th>
<th>Licensed</th>
</tr>
</thead>
</table>

DPI-SSL Enforcement

The DPI-SSL Enforcement section contains the lists of addresses included in and excluded from DPI-SSL enforcement.

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Address Detail</th>
<th>Type</th>
<th>Zone</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DPI-SSL Enforcement List</td>
<td></td>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Excluded from DPI-SSL Enforcement List</td>
<td></td>
<td>Group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Managing DPI-SSL Enforcement

On the Security Configuration | Security Services > DPI-SSL Enforcement page, you can add, edit, and delete items on:

- DPI-SSL Enforcement List
- Excluded from DPI-SSL Enforcement List

Topics:
- Editing a DPI-SSL Enforcement List
- Adding a Policy to a DPI-SSL Enforcement List
- Editing a DPI-SSL Enforcement Policy
- Managing Zones for DPI-SSL Enforcement

Editing a DPI-SSL Enforcement List

To edit a DPI-SSL enforcement list:

2. In the DPI-SSL Enforcement section, click the Edit icon next to the list to which you want to edit. The Edit Address Object Group dialog displays.
3. Select the address objects to be added from the left column. Multiple address objects can be selected at one time.
4 Click the **Right Arrow** button.
 To delete an address object from the group, select the address object and click the **Left Arrow** button.
5 Click **OK**.

Adding a Policy to a DPI-SSL Enforcement List

To add new policies to DPI-SSL enforcement list:

1. Navigate to the [Security Configuration | Security Services > DPI-SSL Enforcement](#) page.
2. In the **DPI-SSL Enforcement** section, click the **Add** icon next to the list to which you want to add a policy. The **Add Address Object** dialog displays.
3. Enter a friendly name for the server in the **Name** field.
4. From the **Zone Assignment** drop-down menu, select the server’s zone.
5. From the **Type** drop-down menu, select the type of host from the **Type** drop-down menu. The following setting(s) change, depending on the host type selected.
6. If you selected:
 - **Host** (default) – Enter the IP address in the **IP Address** field.
 - **Range** – Enter the starting and ending IP addresses in the **Starting IP Address** and **Ending IP Address** fields.
7. Click **OK**.

Editing a DPI-SSL Enforcement Policy

To edit a DPI-SSL enforcement policy:

1. Navigate to the [Security Configuration | Security Services > DPI-SSL Enforcement](#) page.
2. In the **DPI-SSL Enforcement** section, click the **Edit** icon next to the a policy you want to edit. The **Edit Address Object** dialog displays.
3. Update the values you want to change.
4. Click **OK**.

Managing Zones for DPI-SSL Enforcement

Use the [System Setup | Network > Zones](#) page to manage DPI-SSL enforcement for specific zones.
Activating SonicWall Client Anti-Virus

By their nature, anti-virus products typically require regular, active maintenance on every PC. When a new virus is discovered, all anti-virus software deployed within an organization must be updated with the latest virus definition files. Failure to do so severely limits the effectiveness of anti-virus software and disrupts productive work time. With more than 50,000 known viruses and new virus outbreaks occurring regularly, the task of maintaining and updating virus protection can become unwieldy. Unfortunately, many small to medium businesses do not have adequate IT staff to maintain their anti-virus software. The resulting gaps in virus defenses may lead to data loss and decreased employee productivity.

The widespread outbreaks of viruses, such as NIMDA and Code Red, illustrate the problematic nature of virus defense for small and medium businesses. Users without the most current virus definition files allow these viruses to multiply and infect many other users and networks. SonicWall Client Anti-Virus prevents occurrences like these and offers a new approach to virus protection. The SonicOS constantly monitors the version of the virus definition file and automatically triggers download and installation of new virus definition files to each user’s computer. In addition, the firewall restricts each user’s access to the Internet until they are protected, therefore acting as an enforcer of the company’s virus protection policy. This new approach ensures the most current version of the virus definition file is installed and active on each PC on the network, preventing a rogue user from disabling the virus protection and potentially exposing the entire organization to an outbreak.

[NOTE: You must purchase an Anti-Virus subscription to enforce Anti-Virus through the firewall’s management interface.]

SonicOS supports both McAfee and Kaspersky client anti-virus for client AV enforcement. These services are licensed separately, allowing you to purchase the desired number of each license for your deployment.
Configuring Client Anti-Virus Service

For information on activating Network Anti-Virus Service, see Activating the Gateway Anti-Virus, Anti-Spyware, and IPS License.

McAfee Client AV Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Licensed</th>
</tr>
</thead>
<tbody>
<tr>
<td>License Count</td>
<td>5</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>12/10/2018</td>
</tr>
</tbody>
</table>

Click here to Manage McAfee Settings, Create Reports and/or Custom Policies.

SentinelOne Client AV Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Licensed</th>
</tr>
</thead>
<tbody>
<tr>
<td>License Count</td>
<td>10</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>05/06/2018</td>
</tr>
</tbody>
</table>

Click here to Manage SentinelOne AV Settings, Create Reports and/or Custom Policies.

Client Anti-Virus Policies

- Disable policy from Trusted to Public
- Switch McAfee AV to Kaspersky AV for clients on Kaspersky enforcement list

Days before forcing update: 5

Force update on alert:
- Low Risk
- Medium Risk
- High Risk

Client Anti-Virus Enforcement

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Address Detail</th>
<th>Type</th>
<th>Zone</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>McAfee Client AV Enforcement List</td>
<td></td>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Excluded from McAfee Client AV Enforcement List</td>
<td></td>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SentinelOne Client AV Enforcement List</td>
<td></td>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Excluded from SentinelOne Client AV Enforcement List</td>
<td></td>
<td>Group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Topics:

- Client AV Status
- Client Anti-Virus Policies
- Client Anti-Virus Enforcement
Client AV Status

The Client AV Status section:

- Displays information about whether the firewall is licensed, the number of licenses, and the date the license expires.
- Contains a link to login to MySonicWall for managing and reviewing detailed system and network information. Clicking this link displays the Licenses > License Management page for MySonicWall login.
- Contains a link to the Network > Zones page for configuring Client AV on a per-zone basis.

Client Anti-Virus Policies

The following features are available in the Client Anti-Virus Policies section:

- **Disable policing from Trusted to Public** - Cleared, this option enforces anti-virus policies on computers located on Trusted zones. Choosing this option allows computers on a trusted zone (such as a LAN) to access computers on public zones (such as DMZ), even if anti-virus software is not installed on the LAN computers.
- **Switch McAfee AV to Kaspersky AV for clients on Kaspersky enforcement list** - When selected, uses Kaspersky AV for clients on the Kaspersky enforcement list instead of McAfee AV.
- **Days before forcing update** - This feature defines the maximum number of days of access to the Internet before the SonicWall requires the latest virus date files to be downloaded. Select from 0 to 5 days; 5 is the default.
- **Force update on alert** - SonicWall broadcasts virus alerts to all SonicWall appliances with an Anti-Virus subscription. Three levels of alerts are available, and you may select more than one. When an alert is received with this option selected, users are upgraded to the latest version of VirusScan ASaP before they can access the Internet. This option overrides the maximum number of days allowed before forcing update selection. In addition, every virus alert is logged, and an alert message is sent to the administrator.
• **Low Risk** - A virus that is not reported in the field and is considered unlikely to be found in the field in the future has a low risk. Even if such a virus includes a very serious or unforeseeable damage payload, its risk is still low. This option is not selected by default.

• **Medium Risk** - If a virus is found in the field, and if it uses a less common infection mechanism, it is considered to be medium risk. If its prevalence stays low and its payload is not serious, it can be downgraded to a low risk. Similarly, it can be upgraded to high risk if the virus becomes more and more widespread. This option is selected by default.

• **High Risk** - To be assigned a high risk rating, it is necessary that a virus is reported frequently in the field. Additionally, the payload must have the ability to cause at least some serious damage. If it causes very serious or unforeseeable damage, high risk may be assigned even with a lower level of prevalence. This option is selected by default.

Client Anti-Virus Enforcement

The Client Anti-Virus Enforcement table has two entries, both with a Type of Group:

- **Third-party Client AV Enforcement List** (where Third-party is McAfee or Kaspersky, depending on which you use)
- **Excluded from Client AV Enforcement List**

To see the IP addresses associated with each entry, click the Expand icon. The Address Detail, Type, and Zone for each entry displays. If you have not configured the enforcement list, clicking the Expand icon displays No Entries.

To hide the IP addresses, click the Collapse icon.

You can edit or add to these two entries, but you cannot delete them.

Topics:

- Creating the Client AV Enforcement List
- Excluding Address Objects from the Client AV Enforcement List
- Protecting Computers Not In Either List

Creating the Client AV Enforcement List

NOTE: Predefined Address Objects, such as interface IPs or the Default Gateway cannot be edited or deleted individually; their Edit and Delete icons are dimmed. You remove a predefined Address Object from the Client AV Enforcement List through editing the List itself. You can, however, edit or delete any Address Object you have defined.

You need to configure the client AV enforcement list with the IP address of the address objects that are to have Client AV enforced.
You can define ranges of IP addresses to receive Anti-Virus enforcement by creating an Address Object containing a range of IP addresses. Any computer requiring enforcement needs a static IP address within the specified range of IP addresses. Up to 64 IP address ranges can be entered for enforcement.

To create the client AV enforcement list from existing Address Objects:

2. Scroll to the Client Anti-Virus Enforcement section.
3. Click the Edit icon for the Third-party Client AV Enforcement List. The Edit Address Object Group dialog displays.
 - Select the IP address(es) to have client AV enforcement from the list on the left.
 - Click the Right Arrow button to move the entries to the list on the right.
4. When finished adding Address Objects, click OK.

To add an Address Object to the Client AV Enforcement List:

2. Scroll to the client Anti-Virus Enforcement section.
3. Click the Add icon for the Third-party Client AV Enforcement List. The Add Address Object dialog displays.
 - Enter a friendly name in the Name field.
 - Select the zone from the Zone Assignment drop-down menu.
 - Select the type from the Type drop-down menu.
 - Enter the IP address of the Address Object in the IP Address field.
 - Click OK.

Excluding Address Objects from the Client AV Enforcement List

SonicWall Client Anti-Virus currently supports Windows platforms. To access the internet, computers with other operating systems must be exempt from Anti-Virus policies.

⚠️ **CAUTION:** To ensure full network protection from virus attacks, it is recommended that only servers and unsupported machines be excluded from protection and that third-party anti-virus software is installed on each machine before excluding that machine from Anti-Virus enforcement.
To define excluded Address Objects:

2. Scroll to the client Anti-Virus Enforcement section.
3. Click the Edit icon for the Excluded from Client AV Enforcement List. The Edit Address Object Group displays.

 ![Edit Address Object Group](image)

4. Select the Address Object(s) to be excluded from the list on the left.
5. Click the Right Arrow to move the objects to the list on the right.
6. When finished excluding Address Objects, click OK.

To add an Address Object to the Excluded Client AV Enforcement List:

2. Scroll to the client Anti-Virus Enforcement section.
3. Click the Add icon for the Excluded from Client AV Enforcement List. The Add Address Object dialog displays.

 ![Add Address Object Dialog](image)

4. Enter a friendly name in the Name field.
5. Select the zone from the Zone Assignment drop-down menu.
6. Select the type from the Type drop-down menu.
7. Enter the IP address of the Address Object in the IP Address field.
8. Click OK.

To add an Address Object to the Excluded from Client AV Enforcement List:

1. Scroll to the client Anti-Virus Enforcement section.

NOTE: Predefined Address Objects, such as interface IPs or the Default Gateway cannot be edited or deleted individually; their Edit and Delete icons are dimmed. You remove a predefined Address Object from the Excluded from Client AV Enforcement List through editing the List itself. You can, however, edit or delete any Address Object you have defined.
2 Click the Add icon for the Excluded from Client AV Enforcement List. The Add Address Object dialog displays.

3 Enter a friendly name in the Name field.
4 Select the zone from the Zone Assignment drop-down menu.
5 Select the type from the Type drop-down menu.
6 Enter the IP address of the Address Object in the IP Address field.
7 Click OK.

Protecting Computers Not In Either List

For those computers not included in either enforcement list, you can specify the type of default enforcement to be applied to them.

To specify a default enforcement to computers not in an enforcement list:
1 Scroll to the client Anti-Virus Enforcement section.
2 Scroll to the bottom of the Security Services > Client AV Enforcement page.
3 Select the type of default enforcement from the For computers whose addresses do not fall in any of the above lists, the default enforcement is drop-down menu:
 • None (default)
 • Third-party anti-virus program (McAfee or Kaspersky, depending on your system)
SonicWall Client CF Enforcement provides protection and productivity policy enforcement for businesses, schools, libraries and government agencies. SonicWall has created a revolutionary content filtering architecture, utilizing a scalable, dynamic database to block objectionable and unproductive Web content.

Client CF Enforcement provides the ideal combination of control and flexibility to ensure the highest levels of protection and productivity. Client CF Enforcement prevents individual users from accessing inappropriate content while reducing organizational liability and increasing productivity. Web sites are rated according to the type of content they contain. The Content Filtering Service (CFS) blocks or allows access to these web sites based on their ratings and the policy settings for a user or group.

Businesses can typically control web surfing behavior and content when the browsing is initiated within the perimeter of the security appliance by setting filter policies on the appliance. But when the same device exits the perimeter, the control is lost. Client CF Enforcement kicks into action to address this gap, by blocking objectionable and unproductive Web content outside the security appliance perimeter.

SonicWall security appliances working in conjunction with Client CF Enforcement automatically and consistently ensure all endpoints have the latest software updates for the ultimate network protection. The client is designed to work with both Windows and Mac PCs.

Client CF Enforcement consists of the following three main components:

- A Network Security Appliance running SonicOS whose role is to facilitate and verify licencing of CFS and to enable or disable enforcement and configure exclusions and other settings.
- Automatic triggering to install the Client CF Enforcement of any client attempting to access the Internet without the client software installed will be blocked from accessing Websites until it is installed.
- Administration of client policies and client groups using the cloud-based EPRS server accessed from MySonicWall or from SonicOS running on the appliance.

Topics:

- Enabling and Configuring Client CF Enforcement
- Enabling Client CFS in Network Zones

Enabling and Configuring Client CF Enforcement

This section describes how to enable and configure settings for Client CF Enforcement in SonicOS.

Client CF Enforcement must be enabled on the SonicWall appliance before users will be presented with a Website block page, which prompts the user to install the Client CF Enforcement.

NOTE: If the Content Filtering Client (CFS) is not activated on MySonicWall, you must activate it to enforce client content filtering polices on client systems.
Configuring Client CF Enforcement in Security Services

To configure settings for Client CF Enforcement:

2. Under the Client CF Enforcement Policies section, select the number of days from the drop-down list for the Grace Period during which CFS enforcement policies remain valid.

 The Client CF Enforcement Lists section contains a table including the Client CFS Enforcement List and the Excluded from Client CF Enforcement List.

 To configure either of these tables, click the Configure icon for the list you wish to configure. The Edit Address Object Group dialog displays. Select from the available list the values to include/not include for the group.

3. For the Client CF Enforcement List and Excluded from Client CF Enforcement List. If you have made any entries in these lists, you can click the arrow next to the list title to display the entries. To add entries to either list, click the Configure icon in that row.

4. For the field labeled For computers whose addresses do not fall in any of the above lists, the default enforcement is, select Client CF Enforcement from the drop-down list. This is located below the Client CF Enforcement Lists section. Selecting this will prompt all other computers connecting to the Internet through the appliance to install the Enforced Client. You can select None from the drop-down list if you only want to enforce the service on computers that you have configured.

5. Click Accept.
Enabling Client CFS in Network Zones

Client Content Filtering is enforced on a per-zone basis by performing the following steps:

1. At the top of the Security Services > Client CF Enforcement page, click the Network > Zones link in the Note.

 The Network > Zones page displays.

 2. Click the Configure button for the zone on which you want to enforce the Client Content Filtering Service. The Add Zone dialog appears.

 3. Select the Enable Client CF Service checkbox.

 4. Click OK.
Managing SonicWall Gateway Anti-Virus Service

SonicWall Gateway Anti-Virus (GAV) delivers real-time virus protection directly on the SonicWall security appliance by using SonicWall’s IPS-Deep Packet Inspection v2.0 engine to inspect all traffic that traverses the SonicWall gateway. Building on SonicWall’s reassembly-free architecture, SonicWall GAV inspects multiple application protocols, as well as generic TCP streams, and compressed traffic. Because SonicWall GAV does not have to perform reassembly, there are no file-size limitations imposed by the scanning engine. Base64 decoding, ZIP, LHZ, and GZIP (LZ77) decompression are also performed on a single-pass, per-packet basis.

SonicWall GAV delivers threat protection by matching downloaded or e-mailed files against an extensive and dynamically updated database of threat virus signatures. Virus attacks are caught and suppressed before they travel to desktops. New signatures are created and added to the database by a combination of SonicWall’s SonicAlert Team, third-party virus analysts, open source developers, and other sources.

SonicWall GAV can be configured to protect against internal threats as well as those originating outside the network. It operates over a multitude of protocols including SMTP, POP3, IMAP, HTTP, FTP, NetBIOS, instant messaging and peer-to-peer applications, and dozens of other stream-based protocols, to provide you with comprehensive network threat prevention and control. Because files containing malicious code and viruses can also be compressed and therefore inaccessible to conventional anti-virus solutions, SonicWall GAV integrates advanced decompression technology that automatically decompresses and scans files on a per-packet basis.

Topics:
- SonicWall GAV Multi-Layered Approach
- SonicWall GAV Architecture
- Activating the Gateway Anti-Virus, Anti-Spyware, and IPS License
- Setting Up SonicWall Gateway Anti-Virus Protection
- Viewing SonicWall GAV Signatures

SonicWall GAV Multi-Layered Approach

SonicWall GAV delivers comprehensive, multi-layered anti-virus protection for networks at the desktop, the network, and at remote sites; see SonicWall GAV multi-layer approach. SonicWall GAV enforces anti-virus policies at the gateway to ensure all users have the latest updates and monitors files as they come into the network.
SonicWall GAV multi-layer approach

Topics:
- Remote Site Protection
- Internal Network Protection
- HTTP File Downloads
- Server Protection
- Cloud Anti-Virus Database

Remote Site Protection

Remove site protection
1. Users send typical e-mail and files between remote sites and the corporate office.
2. SonicWall GAV scans and analyses files and e-mail messages on the SonicWall security appliance.
3. Viruses are found and blocked before infecting remote desktop.
4. The virus is logged, and an alert is sent to the administrator.

Internal Network Protection

Internal network protection

1. Internal user contracts a virus and releases it internally.
2. All files are scanned at the gateway before being received by other network users.
3. If a virus is found, the file is discarded.
4. The virus is logged, and an alert is sent to the administrator.

HTTP File Downloads

HTTP file downloads

1. Client makes a request to download a file from the Web.
2. The file is downloaded through the Internet.
3 The file is analyzed the SonicWall GAV engine for malicious code and viruses.
4 If a virus is found, the file is discarded.
5 The virus is logged, and an alert is sent to the administrator.

Server Protection

Server protection

1. Outside user sends an incoming email.
2. The email is analyzed by the SonicWall GAV engine for malicious code and viruses before being received by the email server.
3. If a virus is found, the threat is prevented.
4. The email is returned to the sender, the virus is logged, and an alert sent to the administrator.

Cloud Anti-Virus Database

The Cloud Gateway Anti-Virus feature introduces an advanced malware scanning solution that compliments and extends the existing Gateway Anti-Virus scanning mechanisms present on SonicWall firewalls to counter the continued growth in the number of malware samples in the wild.

Cloud Gateway Anti-Virus expands the Reassembly Free Deep Packet Inspection engine capabilities by consulting with the datacenter-based malware analysis servers. This approach keeps the foundation of RFDPI-based malware detection by providing a low-latency, real-time solution that is capable of scanning unlimited numbers of files of unlimited size on all protocols that are presently supported without adding any significant incremental processing overhead to the appliances themselves. With this additional layer of security, SonicWall’s Next Generation Firewalls are able to extend their current protection to cover multiple millions of pieces of malware.

SonicWall GAV Architecture

SonicWall GAV is based on SonicWall’s high performance DPIv2.0 engine (Deep Packet Inspection version 2.0) engine, which performs all scanning directly on the SonicWall security appliance. SonicWall GAV includes advanced decompression technology that can automatically decompress and scan files on a per-packet basis to search for viruses and malware; see SonicWall GAV architecture. The SonicWall GAV engine can perform base64 decoding without ever reassembling the entire base64 encoded mail stream. Because SonicWall’s GAV does not have to perform reassembly, there are no file-size limitations imposed by the scanning engine. Base64 decoding and ZIP, LHZ, and GZIP (LZ77) decompression are also performed on a single-pass, per-packet basis. Reassembly
free virus scanning functionality of the SonicWall GAV engine is inherited from the Deep Packet Inspection engine, which is capable of scanning streams without ever buffering any of the bytes within the stream.

SonicWall GAV architecture

Building on SonicWall’s reassembly-free architecture, GAV has the ability to inspect multiple application protocols, as well as generic TCP streams, and compressed traffic. SonicWall GAV protocol inspection is based on high performance state machines which are specific to each supported protocol. SonicWall GAV delivers protection by inspecting over the most common protocols used in today’s networked environments, including SMTP, POP3, IMAP, HTTP, FTP, NetBIOS, instant messaging and peer-to-peer applications and dozens of other stream-based protocols. This closes potential backdoors that can be used to compromise the network while also improving employee productivity and conserving Internet bandwidth.

TIP: If your SonicWall security appliance is connected to the Internet and registered at mySonicWall.com, you can activate a 30-day FREE TRIAL of SonicWall Gateway Anti-Virus, SonicWall Anti-Virus, and SonicWall Intrusion Prevention Service separately from the Security Services > Gateway Anti-Virus, Security Services > Anti-Spyware, and Security Services > Intrusion Prevention pages in the management interface.

Activating the Gateway Anti-Virus, Anti-Spyware, and IPS License

Your appliance must be registered on MySonicWall to use these security services. See your Getting Started Guide for information on creating a MySonicWall account and registering your appliance. For information about upgrading the services in a closed environment, see SonicWall SonicOS 6.5 Update.

Because SonicWall Anti-Spyware is part of SonicWall Gateway Anti-Virus, Anti-Spyware, and Intrusion Prevention Service, the Activation Key you receive is for all three services on your SonicWall security appliance.

If you do not have a SonicWall Gateway Anti-Virus, Anti-Spyware, and Intrusion Prevention Service license activated on your SonicWall security appliance, you must purchase it from a SonicWall reseller or through your mySonicWall.com account (limited to customers in the USA and Canada).
Activating FREE TRIALs

You can try FREE TRIAL versions of SonicWall Gateway Anti-Virus, SonicWall Anti-Spyware, and SonicWall Intrusion Prevention Service. For information about activating a free trial of any or all of the Security Services, see the *Getting Started Guide* for your appliance.

Setting Up SonicWall Gateway Anti-Virus Protection

Activating the SonicWall Gateway Anti-Virus license on your SonicWall security appliance does not automatically enable the protection.

To configure SonicWall Gateway Anti-Virus:

1. Enable SonicWall Gateway Anti-Virus.
2. Apply SonicWall Gateway Anti-Virus Protection to zones.

NOTE: For complete instructions on setting up SonicWall Gateway Anti-Virus, refer to the SonicWall *Gateway Anti-Virus Administration Guide*.

Topics:

- Security Services > Gateway Anti-Virus Page
- Enabling SonicWall GAV
- Applying SonicWall GAV Protection on Zones
- Viewing SonicWall GAV Status Information
- Specifying Protocol Filtering
- Configuring Gateway AV Settings
- Configuring Cloud Gateway AV
Security Services > Gateway Anti-Virus Page

The Security Services > Gateway Anti-Virus page provides the settings for configuring SonicWall GAV on your SonicWall security appliance as well as displays both the anti-virus status and the anti-virus signatures.

Enabling SonicWall GAV

You must select the Enable Gateway Anti-Virus checkbox in the Gateway Anti-Virus Global Settings section to enable SonicWall GAV on your SonicWall security appliance.

You must specify the zones you want SonicWall GAV protection on the System Setup | Network > Zones page.

Applying SonicWall GAV Protection on Zones

You apply SonicWall GAV to zones when you add or edit a zone on the Network > Zones page. From the Security Services > Gateway Anti-Virus page, you can quickly display the Network > Zones page by clicking the link in the
Note: Enable the Gateway Anti-Virus per zone from the Network > Zones page in the Gateway Anti-Virus Status section.

NOTE: For instructions on applying SonicWall GAV protection to zones, refer to Applying SonicWall GAV Protection on Zones.

Viewing SonicWall GAV Status Information

The Gateway Anti-Virus Status section shows the state of the anti-virus signature database, including the database's timestamp, and the time the SonicWall signature servers were last checked for the most current database version. The SonicWall security appliance automatically attempts to synchronize the database on startup, and once every hour.

Checking the SonicWall GAV Signature Database Status

The Gateway Anti-Virus Status section displays the following information:

- **Signature Database** indicates whether the signature database needs to be downloaded or has been downloaded.
- **Signature Database Timestamp** displays the last update to the SonicWall GAV signature database, not the last update to your SonicWall security appliance.
- **Last Checked** indicates the last time the SonicWall security appliance checked the signature database for updates. The SonicWall security appliance automatically attempts to synchronize the database on startup, and once every hour.
- **Gateway Anti-Virus Expiration Date** indicates the date when the SonicWall GAV service expires. If your SonicWall GAV subscription expires, the SonicWall IPS inspection is stopped and the SonicWall GAV configuration settings are removed from the SonicWall security appliance. These settings are automatically restored after renewing your SonicWall GAV license to the previously configured state.

The Gateway Anti-Virus Status section displays **Note:** Enable the Gateway Anti-Virus per zone from the Network > Zones page. Clicking on the Network > Zones link displays the Network > Zones page for applying SonicWall GAV on zones.

NOTE: For instructions on applying SonicWall GAV protection to zones, refer to Applying SonicWall GAV Protection on Zones.

Updating SonicWall GAV Signatures

By default, the SonicWall security appliance running SonicWall GAV automatically checks the SonicWall signature servers once an hour. There is no need for an administrator to constantly check for new signature updates. You can also manually update your SonicWall GAV database at any time by clicking the Update button located in the Gateway Anti-Virus Status section.
SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.

Specifying Protocol Filtering

SonicWall GAV signature updates are secured. The SonicWall security appliance must first authenticate itself with a pre-shared secret, created during the SonicWall Distributed Enforcement Architecture licensing registration. The signature request is transported through HTTPS, along with full server certificate verification.
Enabling Outbound Inspection

The Enable Outbound Inspection feature is available for HTTP, FTP, SMTP, and TCP traffic.

Restricting File Transfers

For each protocol, except TCP Stream, you can restrict the transfer of files with specific attributes by clicking on the Settings button under the protocol in the Gateway Anti-Virus Global Settings section.

FTP Settings

These restrict-transfer FTP Settings include:

- **Restrict Transfer of password-protected Zip files** - Disables the transfer of password protected ZIP files over any enabled protocol. This option only functions on protocols (for example, HTTP, FTP, SMTP) that are enabled for inspection.

- **Restrict Transfer of MS-Office type files containing macros (VBA 5 and above)** - Disables the transfers of any MS Office 97 and above files that contain VBA macros.

- **Restrict Transfer of packed executable files (UPX, FSG, etc.)** - Disables the transfer of packed executable files.

Packers are utilities that compress and sometimes encrypt executables. Although there are legitimate applications for these, they are also sometimes used with the intent of obfuscation, so as to make the executables less detectable by anti-virus applications. The packer adds a header that expands the file in memory, and then executes that file.
SonicWall Gateway Anti-Virus currently recognizes the most common packed formats: UPX, FSG, PKLite32, Petite, and ASPack. Additional formats are dynamically added along with SonicWall GAV signature updates.

Exclusion Settings
- Drop-down menu – Excludes the selected address object from the restrict-transfer FTP settings.

Resetting Gateway AV Settings
1. To reset all Gateway Anti-Virus (AV) settings to factory default values, click the Reset Gateway AV Settings button. A confirmation message displays.

 ![Confirmation Message]

 Warning! All GAV Settings will be reset to factory default values.
 Please Click 'OK' to confirm.

 OK Cancel

2. Click OK.

Configuring Gateway AV Settings
Clicking the Configure Gateway AV Settings button at the bottom of the Gateway Anti-Virus Global Settings section displays the Gateway AV Configuration View dialog, which allows you to configure clientless notification alerts and create a SonicWall GAV exclusion list.
Topics:

- Configuring Gateway AV Settings
- Configuring HTTP Clientless Notification
- Configuring a SonicWall GAV Exclusion List

Configuring Gateway AV Settings

```
Gateway AV Settings

- Disable SMTP Responses
- Disable detection of EICAR test virus
- Enable HTTP Byte-Range requests with Gateway AV
- Enable FTP ‘REST’ requests with Gateway AV
- Do not scan parts of files with high compression ratio
- Block files with multiple levels of zip/gzip compression
- Enable detection-only mode
```

To configure Gateway AV options:

1. To suppress the sending of e-mail messages (SMTP) to clients from SonicWall GAV when a virus is detected in an e-mail or attachment, select the **Disable SMTP Responses** checkbox. This option is not selected by default.

2. The EICAR Standard Anti-Virus Test file is a special virus simulator file that checks and confirms the correct operation of the SonicWall Gateway AV service. To suppress the detection of the EICAR, select the **Disable detection of EICAR test virus** checkbox. This setting is selected by default.

3. To allow the sending of byte serving, the process of sending only a portion of an HTTP message or file, select the **Enable HTTP Byte-Range requests with Gateway AV** checkbox. This setting is selected by default.

 The SonicWall Gateway Anti-Virus (GAV) security service, by default, suppresses the use of HTTP Byte-Range requests to prevent the sectional retrieval and reassembly of potentially malicious content. This is done by terminating the connection and thus preventing the user from receiving the malicious payload. By enabling this setting you override this default behavior.

4. To allow the use of the FTP REST request to retrieve and reassemble sectional messages and files, select the **Enable FTP ‘REST’ requests with Gateway AV** checkbox. This setting is selected by default.

 The SonicWall GAV, by default, suppresses the use of the FTP ‘REST’ (restart) request to prevent the sectional retrieval and reassembly of potentially malicious content. This is done by terminating the connection and thus preventing the user from receiving the malicious payload. By enabling this setting you override this default behavior.

5. To suppresses the scanning of files, or parts of files, that have high compression rates, select the **Do not scan parts of files with high compression rates** checkbox. This setting is selected by default.

6. To block files containing multiple levels of zip and/or gzip compression, select the **Block files with multiple levels of zip/gzip compression** checkbox. This setting is not selected by default.

7. To have the Gateway AV service in detection-only mode, which only detects and logs virus traffic without stopping such traffic, select the **Enable detection-only mode** checkbox. This setting is not selected by default.
Configuring HTTP Clientless Notification

The HTTP Clientless Notification feature notifies users when GAV detects an incoming threat from an HTTP server.

If this feature is disabled, when GAV detects an incoming threat from an HTTP server, GAV blocks the threat and the user receives a blank HTTP page. Typically, users will attempt to reload the page because they are not aware of the threat. The HTTP Clientless Notification feature informs the user that GAV detected a threat from the HTTP server.

TIP: The HTTP Clientless Notification feature is also available for SonicWall Anti-Spyware.

To configure this feature.

1. Select the **Enable HTTP Clientless Notification Alerts** checkbox. This option is selected by default.

2. Optionally, enter a message in the **Message to Display when Blocking** field. The default message is **This request is blocked by the Firewall Gateway Anti-Virus Service.**

TIP: You can configure a timeout for the HTTP Clientless Notification on the **Security Services > Base Setup** page under the **Security Services Settings** heading.

Configuring a SonicWall GAV Exclusion List

Any IP addresses listed in the exclusion list bypass virus scanning on their traffic. The **Gateway AV Exclusion List** section provides the ability to either select an Address Object or define a range of IP addresses whose traffic will be excluded from SonicWall GAV scanning.

CAUTION: Use caution when specifying exclusions to SonicWall GAV protection.

To add an IP address range for exclusion, perform these steps:

1. Navigate to the **Security Configuration | Gateway Anti-Virus | Gateway Anti-Virus Global Settings** section.

2. Click the **Configure Gateway AV Settings** button.

3. Select the **Enable Gateway AV Exclusion List** checkbox in the **Gateway AV Exclusion List** section to enable the exclusion list.

4. Select one of these:
• **Use Address Object** radio button
 a) Select an address object from the drop-down menu.
 b) Go to Step 5.

• **Use Address Range** radio button.
 a) Click the Add button. The **Add GAV Range Entry** dialog displays.
 b) Enter the IP address range in the **IP Address From** and **IP Address To** fields.
 c) Click OK. Your IP address range appears in the **Gateway AV Exclusion List** table.

NOTE: To change an entry, click the **Edit** icon in the **Configure** column or to delete an entry, click the **Delete** icon. To delete all entries in the exclusion list, click the **Delete All** button.

5 Click OK.

Configuring Cloud Gateway AV

To enable the Cloud Gateway Anti-Virus feature:

1 Navigate to the **Security Configuration | Gateway Anti-Virus | Cloud Anti-Virus Global Settings** section.

![Cloud Anti-Virus Global Settings](image)

2 Select the **Enable Cloud Anti-Virus Database** checkbox. (This option is selected by default.) Optionally, certain cloud-signatures can be excluded from being enforced to alleviate false positive problems or to enable downloading specific virus files as necessary.

To configure the exclusion list:

1 Click the **Cloud AV DB Exclusion Settings** button. The **Add Cloud AV Exclusion** dialog displays.

![Cloud AV Exclusions List](image)

2 Enter the signature ID in the **Cloud AV Signature ID** field. The ID must be a numeric value.
3 Click the **Add** button.
4 Repeat **Step 2** and **Step 3** for each signature ID to be added.
5 Optionally, to update a signature ID:
 a Select the signature ID in the List field.
 b Enter the updated signature in the Cloud AV Signature ID field.
 c Click Update.

6 Optionally, to delete:
 • A signature ID, select the ID in the List field, and then click the Remove button.
 • All signatures, click the Remove All button.

7 Optionally, to view the latest information on a signature, select the signature ID in the list and click the Sig Info button. The information for the signature is displayed on the SonicALERT website.

8 Click OK when you have finished configuring the Cloud AV exclusion list.

Viewing SonicWall GAV Signatures

The Gateway Anti-Virus Signatures section allows you to view the contents of the SonicWall GAV signature database. All the entries displayed in the Gateway Anti-Virus Signatures table are from the SonicWall GAV signature database downloaded to your SonicWall security appliance. The number of malware family signature is displayed above the table.

NOTE: Signature entries in the database change over time in response to new threats.

Topics:

- Displaying Signatures
- Navigating the Gateway Anti-Virus Signatures Table
- Searching the Gateway Anti-Virus Signature Database
Displaying Signatures

You can display the signatures in a variety of views:

- **View Style** – Select one of these from the First Letter drop-down menu:
 - **All Signatures** - Displays all the signatures in the table, 50 to a page.
 - **0 – 9** - Displays signature names beginning with the number you select from the menu.
 - **A – Z** - Displays signature names beginning with the letter you select from menu.
- **Search String** - Displays signatures containing a specific string:
 a. Enter the string in the Lookup Signatures Containing String field.
 b. Click the Magnifying Glass icon.

Navigating the Gateway Anti-Virus Signatures Table

The SonicWall GAV signatures are displayed fifty to a page in the Gateway Anti-Virus Signatures table. The Items field displays the table number of the first signature. For information about navigating through the table, see SonicWall SonicOS 6.5 About SonicOS.

Searching the Gateway Anti-Virus Signature Database

You can search the signature database by entering a search string in the Lookup Signatures Containing String field, then clicking the Search icon.

Only the signatures that match the specified string are displayed in the Gateway Anti-Virus Signatures table.
Activating Intrusion Prevention Service

- Intrusion Prevention Service Overview
- Configuring Intrusion Prevention Service

Intrusion Prevention Service Overview

Intrusion Prevention Service (IPS) delivers a configurable, high performance Deep Packet Inspection engine for extended protection of key network services such as Web, Email, file transfer, Windows services and DNS. SonicWall IPS is designed to protect against application vulnerabilities as well as worms, Trojans, and peer-to-peer, spyware and back-door exploits. The extensible signature language used in SonicWall’s Deep Packet Inspection engine also provides proactive defense against newly discovered application and protocol vulnerabilities. SonicWall IPS off loads the costly and time-consuming burden of maintaining and updating signatures for new hacker attacks through SonicWall’s industry-leading Distributed Enforcement Architecture (DEA). Signature granularity allows SonicWall IPS to detect and prevent attacks based on a global, attack group, or per-signature basis to provide maximum flexibility and control false positives.

Topics:
- SonicWall Deep Packet Inspection
- How SonicWall’s Deep Packet Inspection Works
- SonicWall IPS Terminology
- IPS Status
- IPS Global Settings
- Configuring IPS Protection on Zones
- IPS Policies

SonicWall Deep Packet Inspection

Deep Packet Inspection looks at the data portion of the packet. The Deep Packet Inspection technology includes intrusion detection and intrusion prevention. Intrusion detection finds anomalies in the traffic and alerts the administrator. Intrusion prevention finds the anomalies in the traffic and reacts to it, preventing the traffic from passing through.

Deep Packet Inspection is a technology that allows a firewall to classify passing traffic based on rules. These rules include information about layer 3 and layer 4 content of the packet as well as the information that describes the contents of the packet’s payload, including the application data (for example, an FTP session, an HTTP Web browser session, or even a middleware database connection). This technology allows the administrator to detect and log intrusions that pass through the firewall, as well as prevent them (i.e. dropping the packet or resetting the TCP connection). SonicWall’s Deep Packet Inspection technology also correctly handles TCP fragmented byte stream inspection as if no TCP fragmentation has occurred.
How SonicWall’s Deep Packet Inspection Works

Deep Packet Inspection technology enables the firewall to investigate farther into the protocol to examine information at the application layer and defend against attacks targeting application vulnerabilities. This is the technology behind SonicWall Intrusion Prevention Service. SonicWall’s Deep Packet Inspection technology enables dynamic signature updates pushed from the SonicWall Distributed Enforcement Architecture.

The following steps describe how the SonicWall Deep Packet Inspection Architecture works; see SonicWall deep packet inspection architecture:

1. Pattern Definition Language Interpreter uses signatures that can be written to detect and prevent against known and unknown protocols, applications and exploits.
2. TCP packets arriving out-of-order are reassembled by the Deep Packet Inspection framework.
3. Deep Packet Inspection engine preprocessing involves normalization of the packet’s payload. For example, a HTTP request may be URL encoded and thus the request is URL decoded in order to perform correct pattern matching on the payload.
4. Deep Packet Inspection engine postprocessors perform actions which may either simply pass the packet without modification, or could drop a packet or could even reset a TCP connection.
5. SonicWall’s Deep Packet Inspection framework supports complete signature matching across the TCP fragments without performing any reassembly (unless the packets are out of order). This results in more efficient use of processor and memory for greater performance.

SonicWall deep packet inspection architecture

SonicWall IPS Terminology

- **Stateful Packet Inspection** - looking at the header of the packet to control access based on port, protocol, and IP address.
• **Deep Packet Inspection** - looking at the data portion of the packet. Enables the firewall to investigate farther into the protocol to examine information at the application layer and defend against attacks targeting application vulnerabilities.

• **Intrusion Detection** - a process of identifying and flagging malicious activity aimed at information technology.

• **False Positive** - a falsely identified attack traffic pattern.

• **Intrusion Prevention** - finding anomalies and malicious activity in traffic and reacting to it.

• **Signature** - code written to detect and prevent intrusions, worms, application exploits, and Peer-to-Peer and Instant Messaging traffic.

Configuring Intrusion Prevention Service

Intrusion Prevention Service (IPS) is configured on the Security Configuration | Security Services > Intrusion Prevention page, which is divided into three panels:

- IPS Status
- IPS Global Settings
- IPS Policies

IPS Status

<table>
<thead>
<tr>
<th>Signature Database</th>
<th>Time Stamp</th>
<th>Last Checked</th>
<th>IPS Service Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTC 02/14/2017 15:18:25.000</td>
<td>02/14/2017 15:18:25.000</td>
<td>02/24/2017 13:27:08.240</td>
<td></td>
</tr>
</tbody>
</table>

IPS Global Settings

- **Enable IPS**

 - High Priority Attacks
 - Medium Priority Attacks
 - Low Priority Attacks

- **Log Redundancy Filter** (seconds)

- **Configure IPS Settings**
- **RESET IPS SETTINGS & POLICIES**

IPS Policies

<table>
<thead>
<tr>
<th>Category</th>
<th>Prevent</th>
<th>Detect</th>
<th>Comments</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVEX</td>
<td>Global</td>
<td>Global</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACKDOOR</td>
<td>Global</td>
<td>Global</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Topics:

- IPS Status
- IPS Global Settings
- Configuring IPS Protection on Zones
- IPS Policies

IPS Status

The **IPS Status** panel displays status information for the signature database and your SonicWall IPS license.

![IPS Status Panel](image)

The **IPS Status** panel displays the following information:

- **Signature Database** indicates whether the signature database is being downloaded, has been downloaded, or needs to be downloaded. The signature database is updated automatically about once an hour. You can also manually update your IPS database at any time by clicking the **Update** button located in the **IPS Status** section.

- **Signature Database Timestamp** displays the last update to the IPS signature database, not the last update to your SonicWall security appliance.

- **Last Checked** indicates the last time the SonicWall security appliance checked the signature database for updates. The SonicWall security appliance automatically attempts to synchronize the database on startup, and once every hour.

- **IPS Service Expiration Date** indicates the date when the IPS service expires. If your IPS subscription expires, the SonicWall IPS inspection is stopped and the IPS configuration settings are removed from the SonicWall security appliance. After renewing your IPS license, these settings are automatically restored to the previously configured state.

- **Note:** Enable the Intrusion Prevention Service per zone from the **Network > Zones** page.

 If you click on **Network > Zones** in this note, it displays the **System Setup | Network > Zones** page where you can configure IPS on zones. See Configuring IPS Protection on Zones.

IPS Global Settings

The **IPS Global Settings** panel provides the key settings for enabling SonicWall IPS on your firewall.

![IPS Global Settings Panel](image)

SonicWall IPS is activated by globally enabling IPS on your firewall and selecting the class of attacks. Optionally, you can configure an **IPS Exclusion List** as well.

Topics:

- **Enabling IPS**
Enabling IPS

To enable IPS on your firewall:

2. Scroll down to the IPS Global Settings section.
3. Select Enable IPS.
4. Select the action that you want (Prevent All, Detect All, or both) for each of the Signature Groups:
 - High Priority Attacks
 - Medium Priority Attack
 - Low Priority Attacks

NOTE: To activate intrusion prevention on the firewall, you must specify a Prevent All action for at least one of the Signature Groups. If no Prevent All actions are checked, no intrusion prevention occurs on the firewall.

NOTE: Selecting both Prevent All and Detect All for all of the Signature Groups protects your network against the most dangerous and disruptive attacks.

Configuring an IPS Exclusion List

(Optional) To configure an IPS Exclusion List:

2. Scroll down to the IPS Global Settings section.
3. Select Enable IPS.
4. Click the Configure IPS Settings button.
The IPS Exclusion List dialog appears.

5 Select Enable IPS Exclusion List.
6 Select either the Use Address Object option or the Use Address Range option.
7 If you selected the Use Address Object option, select the address object you want to exclude from the menu.
8 If you selected the Use Address Range option, click the Add button.
 The Add IPS Range Entry dialog appears.
9 Enter the IP address range to exclude in the IP Address From and the IP Address To boxes.
10 Click OK.

Resetting the IPS Settings and Policies

To reset the IPS Settings and Policies:
1 Navigate to the Security Configuration | Security Services > Intrusion Prevention page.
2 Scroll down to the IPS Global Settings section.
3 Click the Reset IPS Settings & Policies button.
The following message is displayed.

![Warning: All IPS settings and IPS policy configuration will be reset to factory default values. Please click 'OK' to confirm.]

4 Click OK.

The following message appears at the bottom of the screen: Status: The configuration has been updated.

Configuring IPS Protection on Zones

You apply SonicWall IPS to zones on the Network > Zones page to enforce SonicWall IPS not only between each network zone and the WAN, but also between internal zones. For example, enabling SonicWall IPS on the LAN zone enforces SonicWall IPS on all incoming and outgoing LAN traffic.

In the IPS Status section of the Security Services > Intrusion Prevention Service page, click the Network > Zones link to access the Network > Zones page. You apply SonicWall IPS to a zone listed on the Network > Zones page.

To enable SonicWall on a zone:

1. Navigate to the Security Configuration | Network > Zones page or from the IPS Status section on the Security Services > Intrusion Prevention page, click the Network > Zones link. The Network > Zones page is displayed.
2. In the Configure column in the Zone Settings table, click the Edit icon for the zone you want to apply SonicWall IPS. The Edit Zone window is displayed.
3. Click the Enable IPS checkbox. A checkmark appears. To disable SonicWall IPS, clear the box.
4. Click OK.

You also enable SonicWall IPS protection for new zones you create on the Network > Zones page. Clicking the Add button displays the Add Zone window, which includes the same settings as the Edit Zone window.

IPS Policies

The IPS Policies panel allows you to view SonicWall IPS signatures and configure the handling of signatures by category groups or on a signature by signature basis. Categories are signatures grouped together based on the type of attack.
You can view the signatures in these ways:

- Viewing and Configuring Category Settings
- Viewing and Configuring Signature Settings
- Viewing and Configuring Signatures for Specific Categories
- Priority Menu
- Lookup Signature ID

Viewing and Configuring Category Settings

In the View Style row, the Category menu lets you choose the categories or signatures you want to display in the Category column. You can choose All categories, All signatures, or an individual category, such as ACTIVEX or DNS. If you choose an individual category, the signatures for that category are displayed.

The Category column allows you to sort categories and signatures in ascending or descending order by clicking the up or down arrow next to the column heading.

![IPS Policies](image)

To view or change the IPS category settings for a particular category:

1. Select All categories from the Category menu.
2. Click the Edit icon in the Configure column for that category. The Edit IPS Category dialog appears.

![IPS Category Settings](image)

3. From the Prevention and Detection menus, select Use Global Setting, Enable, or Disable. If you select Use Global Setting, the values configured in the IPS Global Settings section are used, but you can override the IPS Global Settings by selecting Enable or Disable from these menus.
4. From the remaining menus, select the values that you want.
5. For the Log Redundancy Filter (seconds) option, if you want to use the values that you configured in the IPS Global Settings section, select Use Global Settings.
6. Click OK.
Viewing and Configuring Signature Settings

To view or change the IPS signature settings for a particular signature:

1. Select **All signatures** from the **Category** menu.
2. Click the **Edit** icon in the **Configure** column for that signature. The **Edit IPS Signature** dialog appears.

IPS Signature Settings

<table>
<thead>
<tr>
<th>Signature Category:</th>
<th>ACTIVEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Name:</td>
<td>Active PDF WebGrabber Activex Installatic</td>
</tr>
<tr>
<td>Signature ID:</td>
<td>4568</td>
</tr>
<tr>
<td>Priority:</td>
<td>Medium</td>
</tr>
<tr>
<td>Direction:</td>
<td>Incoming, to Client</td>
</tr>
<tr>
<td>Prevention:</td>
<td>Use Category Setting (Disabled)</td>
</tr>
<tr>
<td>Detection:</td>
<td>Use Category Setting (Disabled)</td>
</tr>
</tbody>
</table>

3. From the **Prevention** and **Detection** menus, select **Enable** or **Disable**. The **Use Category Setting** option is disabled.
4. From the remaining menus, select the values that you want.
5. For the **Log Redundancy Filter (seconds)** option, if you want to use the values that you configured in the **IPS Global Settings** section, select **Use Category Settings**.
6. Click **OK**.

Viewing and Configuring Signatures for Specific Categories

To view and configure signatures for specific categories:

1. Select one of the individual categories from the **Category** menu. The signatures for that category are displayed.
2. Click the **Edit** icon in the **Configure** column for that signature. The **Edit IPS Signature** dialog appears.

The first five boxes are grayed and contain non-configurable data for that signature.
3. From the **Prevention** and **Detection** menus, select **Enable** or **Disable**. The **Use Category Setting** option is disabled.
4. From the remaining menus, select the values that you want.
5. For the **Log Redundancy Filter (seconds)** option, if you want to use the values that you configured in the **IPS Global Settings** section, select **Use Category Settings**.
6. Click **OK**.
Priority Menu

The **Priority** menu lets you specify the priority of the signatures you want to display.

To specify the priority of the signatures you want to display:

- Select one of the following priorities from the **Priority** menu:
 - All
 - High
 - Medium
 - Low

Lookup Signature ID

You can use the **Lookup Signature ID** box to view or change the IPS signature settings for a particular signature.

To view or change the IPS signature settings for a particular signature:

1. Enter the signature ID in the **Lookup Signature ID** box.

2. Click the **Lookup** icon next to the box. The **Edit IPS Signature** dialog appears.

3. From the **Prevention** and **Detection** menus, select **Enable** or **Disable**. The **Use Category Setting option** is disabled.

4. From the remaining menus, select the values that you want.

5. For the **Log Redundancy Filter (seconds)** option, if you want to use the values that you configured in the **IPS Global Settings** section, select **Use Category Settings**.

6. Click **OK**.
Viewing Capture ATP Status

![Capture ATP Status Graph]

IMPORTANT: Capture Advanced Threat Protection (ATP) is an add-on security service to the firewall, similar to Gateway Anti-Virus (GAV), that helps a firewall identify whether a file is malicious.

Capture ATP is supported on all SuperMassive, NSA, and TZ600 and TZ500/TZ500W appliances running SonicOS 6.5 or higher.

Before you can enable Capture ATP you must first get a license, and you must enable the Gateway Anti-Virus (GAV) and Cloud Anti-Virus Database services. After Capture ATP is licensed, you can view Capture ATP status in your MySonicWall account as well as configure and receive alerts and notifications.

For further information about Capture ATP, licensing it, and using your MySonicWall account to configure and receive alerts and notifications, see the SonicOS 6.5 Capture Advanced Threat Protection Feature Guide.

The Capture ATP > Status page displays a graph and a log table that provide information for each file that has been scanned. Files can be uploaded to Capture ATP for scanning from this page by clicking the Upload a file button.

Topics:
- About the Chart
- About the Log Table
- Uploading a File for Analysis
- Viewing Threat Reports
About the Chart

The chart shows the number of files scanned for each day. The X axis represents time and shows only the last 30 days, with a bar for each day. The Y axis represents the number of files scanned.

The percentage of malicious files found is represented by the color of each bar in the chart. The legend shows the percentage of files that each color represents, from zero (light grey) indicating that no malicious files were found to bright red indicating that 100% of files were found to be malicious.

The number of files scanned is shown below the chart.

When you mouse over a bar, a popup message shows the actual numbers of files scanned and malicious files found on that day.
About the Log Table

Below the graph, the log table shows information for each file that has been scanned. The log table allows you to scroll through the list of scanned files. If a scan fails, that row is dimmed. If a malicious file is found, that row is bolded and a red **Malicious** icon displays. Clicking on any row opens the threat report.

The heading for this page is dynamic and can appear in one of two states, depending on whether filters are applied:

- When no filters are applied - **Viewing n files scanned.**
- When filters are applied - **Viewing n files of y total scanned.**

The rows of the **Date** column can be sorted in ascending or descending order. The heading of the column used for sorting is black instead of grey. The selected sort order is persistent as filters are added or removed.

Topics:

- Filtering the Display with a Filter Tag
- Filtering the Display for One Instance
Friendly Filename Display

SonicWall Capture ATP logs the friendly filename of scanned files for the following non-HTTP protocols:

- SMTP
- IMAP
- POP3
- NetBIOS
- FTP

This feature allows system administrators to easily identify the files being scanned by Capture ATP and their status.

The limitations of this feature are:

- Friendly filenames are supported only up to a maximum of 256 characters.
- Filename information cannot be parsed into a friendly filename for TCP protocol streams.
- A filename cannot be parsed into a friendly filename if it is not part of single network packet.

Filtering the Display with a Filter Tag

| IMPORTANT: | The graph, log table, and filters are bound, and any interactions on one affects the others. |

To customize what is displayed in the log table:

1. Click the **Add filter** link.

 ![Add filter](viewing_1859_files_scanned.png)

 A popup dialog displays.

2. Select the criteria you want from the drop-down menus:
 a. From the first drop-down menu, select the column name, such as **Status** (default).
 b. From the second drop-down menu, select the operator: **is** (default) or **is not**.
 c. From the third drop-down menu, select the appropriate criteria for the selected column. What is displayed depends on what you selected from the first drop-down menu.

3. Click **Add**. A filter tag is displayed and the table results are updated immediately.

 ![Add filter](viewing_0_files_scanned.png)

4. To add more filters, repeat steps **Step 1** through **Step 3**. Only one type of filter can be applied to the log table at a time.

To delete a filter, click the **X** in the filter tag.
Filtering the Display for One Instance

To filter for one instance:

1. Click on a single bar in the chart to set the filter for the log table to show the details of that bar (date) only.

Uploading a File for Analysis

You can manually upload files to be scanned by using the Upload a file button.

To upload a file for scanning:

1. Navigate to Capture ATP > Status.
2 Click Upload a file. The Upload a file to be scanned dialog displays.

![Upload a file to be scanned](image)

- Select a file...
- Supported file types: EXE, MSI, ZIP, APK applications and PE
- Maximum file size: 10MB

3 Click the Browse button. The Open file dialog displays.

4 Select a file and click Open.

5 Click Upload. A status message displays.

![Upload complete. Results pending](image)

- NOTE: If the upload fails, an error message is displayed, such as:

```
Sorry, this file is too large. The maximum file size is 10MB.
```

6 The status message will disappear after a few seconds. After the file has been processed, you can click on any file in the log table on the Status page and see the results from the detailed analysis of that file.

Viewing Threat Reports

When you click on any row in the log table on the Capture ATP > Status page, the Capture ATP threat report appears in a new browser window. The report format varies depending on whether a full analysis was performed or the judgment was based on preprocessing.

![Capture ATP Report](image)
Launching the Threat Report from the Log Table

You can launch a threat report by clicking on any row in the log table on the Capture ATP > Status page. Mousing over a row highlights it, and you can click anywhere in the row to launch the threat report in a new browser window.

NOTE: No threat report is launched for archives that do not contain any supported file types.

Viewing the Threat Report Header

The report header is very similar among the various threat reports. This section describes the header components and variations.

![Threat Report Header Example](image)

The banner has two parts:

- An upper banner that is colored:
 - Red for a malicious file.
 - Blue for a clean file.

 The top entry displays the date and time that the file was submitted to Capture ATP for analysis. The bottom entry displays the IP address that downloaded the file.

- A lower banner that contains connection information:
 - On the left is the IP address (IPv4) and port number of the connection source. This is the address from which the file was sent.
 - In the middle is the firewall identified by its serial number or friendly name.
 - On the right is the IP address (IPv4) and port number of the connection destination. This is the address to which the file is being sent.
Viewing the Threat Report Footer

The report footer is very similar among the various threat reports.

<table>
<thead>
<tr>
<th>File Identifiers</th>
<th>Serial Number</th>
<th>Capture ATP Version</th>
<th>Report Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5: 70d23027b1701c766456577e6923a5e4fd9</td>
<td>Serial Number 14B1690CD6AC</td>
<td>Capture ATP Version 2.0.5</td>
<td>Report Generated on Thu, 17 Aug 2017 10:30:11 GMT</td>
</tr>
<tr>
<td>SHA1: 6e10f2f3c4785e4d7e026b82702f3e7b6c6f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHA256: 248b6070693323a0b0e70df267a66e6b0b87e5f36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The File Identifiers are displayed at the left side of the footer, one per line:

- MD5
- SHA1
- SHA258

This information is displayed on the right side of the footer:

- Serial Number
- Capture ATP Version
- Report Generated

Viewing Static File Information

The static file information is displayed on the left side of the threat report and is similar across all types of reports:

- File size in kilobits (kb)
- File type
- File name as it was intercepted by the firewall
Viewing Threat Reports from Preprocessing

There are varying amounts of data on a preprocessor threat report, based on whether the file was found to be malicious or clean.

A preprocessor report from a malicious file
A preprocessor report from a clean file

A clean threat report is seen in either of the following two cases:

Case 1 Virus scans are inconclusive or all good.
 The file matches domain or vendor allow lists.

Case 2 Virus scans are inconclusive or all good.
 No embedded code is present in the file.

Analysis Summary and Status Boxes in Preprocessor Reports

Analysis summary

Preprocessor threat reports contain an **Analysis Summary** section on the left side, which summarizes the findings based on the four phases of analysis during preprocessing.
The true/false results from the four phases of preprocessing are displayed in the status boxes. Four areas of preprocessor analysis shows what happens in the process depending on the result of each phase of the preprocessing.

Four areas of preprocessor analysis

<table>
<thead>
<tr>
<th>Preprocessor phase result</th>
<th>Virus scanners detect malware</th>
<th>Vendor reputation on Allow list? ¹</th>
<th>Domain reputation on Allow list? ¹</th>
<th>Embedded code found in the file?</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>Malicious</td>
<td>Non-malicious</td>
<td>Non-malicious</td>
<td>Continue analysis</td>
</tr>
<tr>
<td>False</td>
<td>Continue analysis</td>
<td>Continue analysis</td>
<td>Continue analysis</td>
<td>Non-malicious</td>
</tr>
</tbody>
</table>

¹. The vendor reputation filter is only applicable for PE files, and the domain reputation might not be available for files delivered over SMTP. In these cases, the Continue analysis state is the phase result.

Some phase results trigger an immediate judgment of either Malicious or Non-malicious, as indicated in Four areas of preprocessor analysis. Otherwise, that phase ends with the Continue analysis state. If all phases of preprocessing result in the Continue analysis state, the file is sent to the cloud for full analysis by Capture ATP.
Malware names in preprocessor reports

If the virus scanners detect known malware in the file, all malware names are listed in the content area of the report.

Malware names

Viewing Threat Reports from a Full Analysis
Full analysis threat reports provide the same set of information for both malicious and non-malicious files, although the banner color is different. This Threat Report format is used when the following conditions occur:

- Virus scans are inconclusive or all good.
- Embedded code is present in the file.
- The file does not match domain or vendor allow lists.

Topics:

- Why Live Detonations Were Needed
- Status Boxes
- Analysis Engine Results Tables

Why Live Detonations Were Needed

The left side of the full analysis threat report displays a summary of the preprocessing results as an explanation of why live detonations were needed. The term live detonations is used to indicate that one or more analysis engines and multiple environments were used to analyze the file in the cloud servers.

Status Boxes

<table>
<thead>
<tr>
<th>Virus scanners</th>
<th>Reputation databases</th>
<th>Detonation engines</th>
<th>Live detonations</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Virus scanners

This is the number of Anti-Virus vendors used, regardless of the judgment from each. SonicWall Gateway Anti-Virus and Cloud Anti-Virus each count as one. Additional virus scanners from many AV products and online scan engines are included in the total.

Reputation databases

One is the vendors allowed list.
One is the domains allowed list.

Detonation engines

Number of analysis engines used to analyze the file.
One is the SonicWall analysis engine.
The status boxes in full analysis threat reports display status from preprocessing results as well as information about the analysis performed in the cloud servers.

Analysis Engine Results Tables

<table>
<thead>
<tr>
<th>Engine Alpha</th>
<th>Engine Beta</th>
<th>Engine Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows XP Pro</td>
<td>Windows 7</td>
<td>Windows XP Pro</td>
</tr>
<tr>
<td>100</td>
<td>92</td>
<td>63</td>
</tr>
<tr>
<td>130s</td>
<td>124s</td>
<td>130s</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Under the status boxes, the full analysis threat report displays multiple tables showing the results from each analysis engine. The engines are designated by names from the Greek alphabet, such as Alpha, Beta, Gamma.

Each row represents a separate environment and indicates the operating system in which the engine was executed.

The overall score from the analysis in each environment is displayed in a highlighted box to the left of the operating system. The color of the box indicates whether the score triggered a malicious or non-malicious judgment:

- Red indicates a malicious judgment.
- Grey indicates a non-malicious judgment.

For each environment, the columns provide the analysis duration and a summary of actions once detonated:

- **Time**: Time taken by the analysis, using s for seconds, m for minutes, and **timeout** if the analysis did not complete.
- **Libraries**: Cumulative count of malware libraries that were read during the analysis.
- **Files**: Cumulative count of files that were created, read, updated, or deleted during the analysis.
- **Registries**: Cumulative count of OS registries that were read during the analysis.
- **Processes**: Cumulative count of processes that were created during the analysis.
- **Mutexes**: Cumulative count of mutual exclusion objects that were used during the analysis to lock a resource for exclusive access.
- **Functions**: Cumulative count of functions executed during the analysis.
- **Connection**: Cumulative count of network connections that were created during the analysis.

You can click any cell in the **Summary of actions** table to jump to the full data available further down in the report. Blank cells are not clickable.
Clicking an item in the last column provides access to a file containing the full details of the analysis by the different engines and which you can open or save:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XML</td>
<td>XML file of all the detailed data behind the above counts.</td>
</tr>
<tr>
<td>Screenshots</td>
<td>Zip file of all the screenshots produced by the analysis.</td>
</tr>
<tr>
<td>PCAP</td>
<td>A packet capture file in pcapNG or libpcap format with details about the connections opened during the analysis.</td>
</tr>
</tbody>
</table>
Configuring Capture ATP

Capture ATP is an add-on security service to the firewall, similar to Gateway Anti-Virus (GAV), that helps a firewall identify whether a file is malicious. Capture ATP is supported on all SuperMassive Series, NSA Series, and TZ600 and TZ500/TZ500W firewalls running SonicOS 6.5 or higher. Capture functionality, however, is not supported in Active/Active DPI mode. Before you can enable Capture ATP you must first get a license, and you must enable the Gateway Anti-Virus (GAV) and Cloud Anti-Virus Database services. After Capture ATP is licensed, you can view Capture ATP status in your MySonicWall account as well as configure and receive alerts and notifications. For further information about Capture ATP, licensing it, and using your MySonicWall account to configure and receive alerts and notifications, see the SonicOS 6.5 Capture Advanced Threat Protection Feature Guide.
About Capture ATP

Capture Advanced Threat Protection (ATP) helps a firewall identify whether a file is malicious by transmitting the file to the cloud where the SonicWall Capture ATP service analyzes the file to determine if it contains a virus or other malicious elements. Capture ATP then sends the results to the firewall. The analysis and reporting are done in real time while the file is being processed by the firewall.

All files are sent to the Capture ATP cloud over an encrypted connection. Files are analyzed and deleted within minutes of a verdict being determined, unless a file is found to be malicious. Malicious files are submitted via an encrypted HTTPS connection to the SonicWall threat research team for further analysis and to harvest threat information. Files are not transferred to any other location for analysis. Malicious files are deleted after harvesting threat information within 30 days of receipt.

Capture ATP provides a file analysis report (threat report) with detailed threat behavior information.

The firewall is located on your premises, while the Capture ATP server and database are located at a SonicWall facility. The firewall creates a secure connection with the Capture ATP cloud service before transmitting data.

Capture ATP works in conjunction with the Gateway Anti-Virus (GAV) and Cloud Anti-Virus services.

For further information about Capture ATP, see the SonicOS 6.2.6 Capture Advanced Threat Protection Feature Guide.

Files are Preprocessed

All files submitted to Capture ATP for analysis are first preprocessed by the GAV service to determine if a file is malicious or benign. You can also use GAV settings to select or define address objects to exclude from GAV and Capture ATP scanning.

Preprocessed files determined to be malicious or benign are not analyzed by Capture ATP. If a file is not determined to be malicious or benign during preprocessing, the file is submitted to Capture ATP for analysis.
Blocking Files Until Completely Analyzed

For HTTP/HTTPS downloads, Capture ATP has an option, Block file download until a verdict is returned, that ensures no packets get through until the file is completely analyzed and determined to be either malicious or benign. The file is held until the last packet is analyzed. If the file has malware, the last packet is dropped, and the file is blocked. The threat report provides information necessary to respond to a threat or infection.

Files are Sent over an Encrypted Connection

All files are sent to the Capture ATP cloud over an encrypted connection. SonicWall does not keep the files. All file types, whether they are malicious or benign are removed from the Capture ATP server after a certain time period.

Activating the Capture ATP License

IMPORTANT: Capture ATP requires the Gateway Anti-Virus service, which must also be licensed.

After the Capture ATP service license is activated, Capture ATP appears in the SonicOS left-hand navigation (left nav) panel below DPI-SSL. If Capture ATP is not licensed, it does not appear in the left nav at all.

NOTE: Click on the Synchronize button on the Updates | Licenses page if Capture ATP does not appear shortly after the Capture ATP service license is activated.

To activate the license, go to the Updates | Licenses page where you can view all service licenses and initiate licensing for Capture ATP. For more information about licensing, see SonicWall SonicOS 6.5 Update.

Enabling Capture ATP

IMPORTANT: You must enable Gateway Anti-Virus and Cloud Anti-Virus before you can enable Capture ATP.

When Capture ATP is licensed but not enabled, the banner displays this message:

Capture ATP is not currently running. Please see the Basic Setup Checklist below for troubleshooting.

In disabled mode, the Basic Setup Checklist section is visible, but the other sections are dimmed.

To enable Capture ATP:

2. Enable both Gateway Anti-Virus (GAV) and Cloud Anti-Virus as described in Managing SonicWall Gateway Anti-Virus Service.
3. Optionally, you can configure GAV and Cloud Anti-Virus settings, which also apply to Capture ATP.
4 Navigate to **Capture ATP > Settings**. If Capture ATP is not enabled, a warning message displays:

![Capture ATP is not currently running. Please see the Basic Setup Checklist below for troubleshooting.](image)

Basic Setup Checklist

- Capture ATP subscription is valid until **08/16/2019** but the service is not currently enabled. (enable it)
- Gateway Anti-Virus is enabled. (manage settings)
- Cloud Anti-Virus Database is enabled. (manage settings)
- Inspected Protocols (manage settings)

5 In the **Basic Setup Checklist** section, click (enable it) in **Capture ATP subscription is valid until date but the service is not currently enabled**. (enable it). The warning message disappears, and the status indicator becomes a green checkmark.

About the Capture ATP > Settings Page

Topics:
- Basic Setup Checklist
- Bandwidth Management
- Exclusions
- Custom Blocking Behavior

Basic Setup Checklist

The **Basic Setup Checklist:**

- Displays the status of Capture ATP and its components, GAV and Cloud Anti-Virus.
- Displays any error states that may be present.
- Allows enabling or disabling of the Capture ATP service.
- Provides links to the **Security Services > Gateway Anti-Virus** page for the GAV, Cloud Anti-Virus, and protocol inspection settings.
• Displays a matrix of the protocol inspection settings and whether the inbound and outbound directions have been enabled.

NOTE: For messages that display in this section, see Capture ATP status through Protocols inspection settings. Enabled corresponds to a green checkmark, and Disabled corresponds to a red X.

Capture ATP status

<table>
<thead>
<tr>
<th>Icon</th>
<th>Message</th>
<th>Link</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Capture ATP service is enabled until renewal_date.</td>
<td>disable it</td>
<td>Click the link to turn off Capture ATP and put the service in disabled mode. You do not need to click Accept to apply this change.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Capture ATP subscription is valid until renewal_date but the service is not currently enabled.</td>
<td>enable it</td>
<td>Click the link to turn on Capture ATP and put the service in enabled mode. You do not need to click Accept to apply this change.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Capture ATP subscription expired on renewal_date.</td>
<td>renew it</td>
<td>Click the link to go to MySonicWall to renew the service.</td>
</tr>
</tbody>
</table>

Gateway Anti-Virus status

<table>
<thead>
<tr>
<th>Icon</th>
<th>Message</th>
<th>Link</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Gateway Anti-Virus is Enabled.</td>
<td>manage settings</td>
<td>Click the link to display the Security Services > Gateway Anti-Virus page.</td>
</tr>
<tr>
<td>Disabled</td>
<td>You must enable Gateway Anti-Virus for Capture ATP to function.</td>
<td>manage settings</td>
<td>Click the link to display the Security Services > Gateway Anti-Virus page.</td>
</tr>
</tbody>
</table>

Cloud Anti-Virus database status

<table>
<thead>
<tr>
<th>Icon</th>
<th>Message</th>
<th>Link</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Cloud Anti-Virus Database is enabled.</td>
<td>manage settings</td>
<td>Click the link to display the Security Services > Gateway Anti-Virus page.</td>
</tr>
<tr>
<td>Disabled</td>
<td>You must enable the Cloud Anti-Virus Database for Capture ATP to function.</td>
<td>manage settings</td>
<td>Click the link to display the Security Services > Gateway Anti-Virus page.</td>
</tr>
</tbody>
</table>

The Inspected Protocols table also provides a manage settings link that takes you to the Security Services > Gateway Anti-Virus page. There, you can enable or disable inspection of specific network traffic protocols, including HTTP, FTP, IMAP, SMTP, POP, CIFS, and TCP Stream. Each protocol can be managed separately for inbound and outbound traffic.

The table below Inspected Protocols displays the current inspection settings for each protocol, in each direction; see Protocols inspection settings.

Protocols inspection settings

<table>
<thead>
<tr>
<th>Icon</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Protocol is inspected.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Protocol is not inspected.</td>
</tr>
<tr>
<td>n / a</td>
<td>Inspection is not applicable to this protocol in this direction.</td>
</tr>
</tbody>
</table>
Bandwidth Management

The **Bandwidth Management** section enables you to select the types of files to be submitted to Capture ATP and to specify the maximum size of submitted files. You can also specify an address object to be excluded from inspection.

By default, only the **Executables (PE, Mach-O, and DMG)** file type is enabled.

The default option for the maximum file size is **Use the default file size specified by the Capture Service (10240 KB)**. This specifies a file size limit of 10 megabytes (10 MB).

If you select **Restrict to KB**, you can enter your own custom value. This value must be a non-zero value and must not be greater than the default limit.

For **Choose an Address Object to exclude from Capture ATP**, optionally select an address object from the drop-down list, or select the option to create a new address object. Members of the selected address object will be excluded from inspection by the Capture ATP service.

Exclusions

The **Exclusion** section allows you to exclude an Address Object or MD5 hash function from Capture ATP.

To exclude an Address Object:

1. Select the Address Object from the drop-down menu or create a new one.
2. Click **Accept**.
To exclude an MD5 file:

1. Click the MD5 Exclusion List Settings button. The Add MD5 Exclusions dialog displays.

 ![MD5 Exclusions List](image)

2. Add the 32-hexadecimal-digit hash function to be excluded.
3. Click Add.
4. To add more than one file, repeat Step 2 and Step 3 for each hash function.
5. Click OK.
6. Click Accept.

Custom Blocking Behavior

Files that are not identified as malicious by other security services on the firewall will be sent to Capture ATP cloud service for analysis.

- Allow file download while awaiting a verdict
 - Will allow file download without delay and the Capture service will analyze the file in parallel for malicious behavior. You will be alerted via email and in firewall logs if the Capture service analysis determines that the file is malicious.
- Block file download until a verdict is returned
 - Will delay file download until a verdict is reached by the Capture service. This affects legitimate files as well as potentially malicious files and may require users to retry the download.

Note: Only applies to HTTP/S file downloads

Choose an Address Object to exclude from blocking the file download until verdict is reached by the Capture Service.

Specify the file types to exclude from blocking the file download until verdict is reached by the Capture Service:

- Executables (PE, Mach-O, and DMG)
- PDF
- Office 97-2003 (.doc, .xls, ...)
- Office (.docx, .xlsx, ...)
- Archives (.jar, .apk, .rar, .gz, and .zip)

The Custom Blocking Behavior section allows you to select the Block file download until a verdict is returned feature.

The default option is Allow file download while awaiting a verdict. This setting allows a file to be downloaded without delay while the Capture service analyzes the file for malicious elements. You can set email alerts or check the firewall logs to find out if the Capture service analysis determines that the file is malicious.
The **Block file download until a verdict is returned** feature should only be enabled if the strictest controls are desired. If you select this feature, a warning dialog appears.

When the **Block file download until a verdict is returned** feature is enabled, the other options become available. You can:

- Select an address object from **Choose an Address Object to exclude from blocking the file download until verdict is reached by the Capture Service**. The default is None.
- Select one or more file types to block from **Specify the file types to exclude from blocking the file download until verdict is reached by the Capture Service**:
 - Executables (PE, Mach-O, and DMG)
 - PDF
 - Office 97-2003 (.doc, .xls, ...)
 - Office (.docx, .xlsx, ...)
 - Archives (.jar, .apk, .rar, .gz, and .zip)

Configuring Capture ATP

To configure Capture ATP:

1. Navigate to Capture ATP > Settings.
2. Ensure Capture ATP, GAV, Cloud Anti-Virus database, and relevant protocols are enabled.
3 In the Bandwidth Management section, select the file types to be analyzed by Capture ATP. By default, only Executables (PE, Mach-O, and DMG) is selected.

4 By default Use the default file size specified by the Capture Service (10240 KB) is selected. To specify a custom size, enter a value between 1 and 10240 in the Restrict to KB field.

5 Optionally, to exclude an Address Object from Capture ATP, select an Address Object from the Choose an Address Object to Exclude from Capture ATP drop-down menu.

6 Optionally, to exclude a file based on its MD5 checksum, click the MD5 Exclusion List Settings button to display the Add MD5 Exclusions dialog.
 a Add the 32-digit hexadecimal hash to the MD5 field.
 b Click Add
 c Repeat Step a and Step b for each file to exclude.
 d Click OK.

7 If you are analyzing HTTP/HTTPS files, in the Custom Blocking Behavior section, you can specify whether all files are to be blocked until analysis is completed.

 By default Allow file download while awaiting a verdict is selected.

 IMPORTANT: The Block file download until a verdict is returned feature should only be enabled if the strictest controls are desired.
If you select this feature, a warning dialog appears.

![Warning Dialog]

Clicking the:

- I agree, apply the setting button selects the Block file download until a verdict is returned option. You also must click the Accept button for the change to take effect.
- Never mind, do not apply link closes the dialog and leaves Allow file download while awaiting a verdict selected.

8 Click Accept.

Disabling GAV or Cloud Anti-Virus

You can disable the Gateway Anti-Virus or Cloud Anti-Virus services by clearing the checkboxes for them on the Security Configuration | Security Services > Gateway Anti-Virus page. If you disable either service while Capture ATP is enabled, a popup message is displayed warning you that Capture ATP will also be disabled.

![Popup Message]

Capture ATP stops working if either Gateway Anti-Virus or Cloud Anti-Virus is disabled. For example, if Gateway Anti-Virus is not enabled, the Capture ATP > Settings page shows You must enable Gateway Anti-Virus for Capture ATP to function, along with a manage settings link that takes you to the Security Services > Gateway Anti-Virus page where you can enable it.

Basic Setup Checklist

- Capture ATP is Enabled until 08/16/2019. Current version is 2.0.5. (disable it)
- You must enable Gateway Anti-Virus Database for Capture ATP to function. (manage settings)
- Cloud Anti-Virus Database is enabled. (manage settings)
- Inspected Protocols (manage settings)
Activating Anti-Spyware Service

Topics:

- Anti-Spyware Overview
- Activating Anti-Spyware Service Protection

Anti-Spyware Overview

SonicWall Anti-Spyware is part of the SonicWall Gateway Anti-Virus, Anti-Virus and Intrusion Prevention Service solution that provides comprehensive, real-time protection against viruses, worms, Trojans, spyware, and software vulnerabilities.

The SonicWall Anti-Spyware Service protects networks from intrusive spyware by cutting off spyware installations and delivery at the gateway and denying previously installed spyware from communicating collected information outbound. SonicWall Anti-Spyware works with other anti-spyware programs, such as programs that remove existing spyware applications from hosts. You are encouraged to use or install host-based anti-spyware software as an added measure of defense against spyware.

SonicWall Anti-Spyware analyzes inbound connections for the most common method of spyware delivery, ActiveX-based component installations. It also examines inbound setup executables and cabinet files crossing the gateway, and resets the connections that are streaming spyware setup files to the LAN. These file packages may be freeware bundled with adware, keyloggers, or other spyware.

If spyware has been installed on a LAN workstation prior to installing the Anti-Spyware service, the service will examine outbound traffic for streams originating at spyware infected clients and reset those connections. For example, when spyware has been profiling a user’s browsing habits and attempts to send the profile information home, the firewall identifies that traffic and resets the connection.

The SonicWall Anti-Spyware Service provides the following protection:

- Blocks spyware delivered through auto-installed ActiveX components, the most common vehicle for distributing malicious spyware programs.
- Scans and logs spyware threats that are transmitted through the network and alerts administrators when new spyware is detected and/or blocked.
- Stops existing spyware programs from communicating in the background with hackers and servers on the Internet, preventing the transfer of confidential information.
- Provides granular control over networked applications by enabling administrators to selectively permit or deny the installation of spyware programs.
- Prevents emailed spyware threats by scanning and then blocking infected emails transmitted either through SMTP, IMAP or Web-based email.
Activating Anti-Spyware Service Protection

The Security Services > Anti-Spyware page displays the configuration settings for managing the service on your SonicWall security appliance.

<table>
<thead>
<tr>
<th>Anti-Spyware Status</th>
<th>Anti-Spyware Global Settings</th>
<th>Anti-Spyware Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Database:</td>
<td>Enable Anti-Spyware</td>
<td>View/Configure</td>
</tr>
<tr>
<td>Signature Database Timestamp:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Checked:</td>
<td>Prevent All</td>
<td>Detect All</td>
</tr>
<tr>
<td>Anti-Spyware Expiration Date:</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The Security Services > Anti-Spyware page is divided into three sections:

- **Anti-Spyware Status** – displays status information on the state of the signature database, your SonicWall Anti-Spyware license, and other information.
- **Anti-Spyware Global Settings** – provides the key settings for enabling SonicWall Anti-Spyware on your SonicWall security appliance, specifying global SonicWall Anti-Spyware protection based on three classes of spyware, and other configuration options.
- **Anti-Spyware Policies** – allows you to view SonicWall Anti-Spyware signatures and configure the handling of signatures by category groups or on a signature by signature basis. Categories are signatures grouped together based on the product or manufacturer.

NOTE: After activating your SonicWall Anti-Spyware license, you must enable and configure Anti-Spyware on the SonicWall management interface before anti-spyware policies are applied to your network traffic.

Topics:

- Anti-Spyware Status
- Anti-Spyware Global Settings
- Applying Anti-Spyware Protection on Zones
- Anti-Spyware Policies
- Configuring Category Policies
- Configuring Signature Policies
Anti-Spyware Status

The Anti-Spyware Status section shows the state of the signature database, including the database's timestamp, and the time the SonicWall signature servers were last checked for the most current signatures. The SonicWall security appliance automatically attempts to synchronize the database on startup, and once every hour.

- **Signature Database** – indicates the signature database has been downloaded to the SonicWall security appliance.
- **Signature Database Timestamp** – displays the date and time the signature database was last updated. The Signature Database Timestamp is a timestamp for updates to the SonicWall Anti-Spyware signature database, not the last update to the SonicWall security appliance.
- **Last Checked** – displays the last time the SonicWall security appliance checked for signature updates.
- **Anti-Spyware Expiration Date** – displays your SonicWall Anti-Spyware license expiration date. If your SonicWall Anti-Spyware subscription expires, the SonicWall Anti-Spyware inspection is stopped and the SonicWall Anti-Spyware configuration settings are removed from the SonicWall security appliance. These settings are automatically restored after renewing your SonicWall Anti-Spyware license to the previously configured state.

The following note contains a link to the **Network > Zones** page where you can configure Anti-Spyware on individual zones:

Note: Enable the Anti-Spyware per zone from the System Setup | Network > Zones page.

Anti-Spyware Global Settings

The Anti-Spyware Global Settings panel enables you to globally prevent and/or detect attacks based on the following attack levels:

- **High Danger Level Spyware** – These spyware applications are the most dangerous to your network, such as keyloggers or porn dialers, or may contain security vulnerabilities. Removal may be extremely difficult or impossible.
- **Medium Danger Level Spyware** – These spyware applications can cause disruption to your network, such as increased network traffic that slows down performance. Removal may be extremely difficult.
- **Low Danger Level Spyware** – These spyware applications are characterized by less intrusive activity and are not an immediate threat. They may profile users and usually are simple to remove.

TIP: SonicWall recommends enabling Prevent All for High Danger Level Spyware and Medium Danger Level Spyware to provide network protection against the most damaging spyware.

Anti-Spyware protection provides two methods for managing global spyware threats: detection (Detect All) and prevention (Prevent All). You must specify a Prevent All action in the Signature Groups panel for anti-spyware to occur on a global level on the SonicWall security appliance.

When Prevent All is enabled for a signature group in the Signature Groups panel, the SonicWall security appliance automatically drops and resets the connection to prevent the traffic from reaching its destination.

When Detect All is enabled for a signature group in the Signature Groups panel, the SonicWall security appliance logs and alerts any traffic that matches any signature in the group, but does not take any action against the traffic. The connection proceeds to its intended destination. You view the SonicWall log on the Log > View page as well as configure how alerts are handled by the SonicWall security appliance in the Log > Automation page.

CAUTION: Be careful when selecting only Detect All. Selecting only Detect All logs and sends alerts on traffic that matches any signature in the group, but it does not take any action against the traffic. The traffic proceeds to its intended destination.
When Detect All and Prevent All are both enabled for a signature group in the Signature Groups panel, the SonicOS logs and sends alerts on traffic that matches any signature in the group, and automatically drops and resets the connection to prevent the traffic from reaching its destination.

Enabling Inspection of Outbound Spyware Communication

The Enable Inspection of Outbound Spyware Communication option is available for scanning outbound traffic for spyware communication.

Applying Anti-Spyware Protection on Zones

If your firewall is running SonicOS, you can apply SonicWall Anti-Spyware to zones on the Network > Zones page to enforce Anti-Spyware not only between each network zone and the WAN, but also between internal zones. For example, enabling Anti-Spyware on the LAN zone enforces Anti-Spyware on all incoming and outgoing LAN traffic.

At the top of the Security Services > Anti-Spyware page, click the Network > Zones link to access the System Setup | Network > Zones page. You apply Anti-Spyware to one of the zones listed on the Network > Zones page.

To enable Anti-Spyware on a zone:

1. In the firewall management interface, navigate to the System Setup | Network > Zones page. (Or from the Anti-Spyware Status section, on the Security Services > Intrusion Prevention page, click the Network > Zones link.) The Network > Zones page is displayed.
2. In the Configure column in the Zone Settings panel, click the Edit icon for the zone you want to apply SonicWall Anti-Spyware. The Edit Zone window is displayed.
3. Click the Enable Anti-Spyware checkbox. A checkmark appears. To disable SonicWall Anti-Spyware, clear the box.
4. Click OK.

You can also enable SonicWall Anti-Spyware protection for new zones you create on the Network > Zones page. Clicking the Add button displays the Add Zone window, which includes the same settings as the Edit Zone window.

Anti-Spyware Policies

The Anti-Spyware Policies section allows you to view and manage how SonicWall Anti-Spyware handles signatures by category groups or on a signature by signature basis. Categories are signatures grouped together by product or manufacturer, and they are listed in the View Style menu.
Entries listed in the **Anti-Spyware Policies** panel are from the SonicWall Anti-Spyware signature database downloaded to your firewall. Categories and signatures are dynamically updated by the Anti-Spyware Service. Categories and signatures dynamically change over time in response to new threats.

You can display the signatures in a variety of views using the **View Style** menu. This menu allows you to specify the categories or signatures to display in the **Anti-Spyware Policies** panel. You can select **All Signatures**, or you can select the first letter or number in the spyware name.

Selecting **All Signatures** from the menu displays all of the signatures by category. The **Anti-Spyware Policies** panel displays all the categories and their signatures. The category headers divide the signature entries. These headers display **Global** in the **Prevent** and **Detect** columns, indicating the global settings that you defined in the **Anti-Spyware Global Settings** section.

Topics:

- **Anti-Spyware Policies Panel**
- **Displaying Spyware Information**
- **Navigating the Anti-Spyware Policies Panel**
- **Searching the Signature Database**
- **Sorting Category or Signature Entries**

Anti-Spyware Policies Panel

The **Anti-Spyware Policies** panel displays the following information about each signature entry:

- **Product** - Displays the spyware name or manufacturer.
- **Name** - Displays the name of the spyware as a link. Clicking the name link displays the SonicAlert information about the spyware.
- **ID** - The SonicWall database ID number of signature.
• **Prevent** - A check mark in this column indicates prevention is enabled. A green check mark appears in the **Detect** column any time you make a change from the global or category prevention settings.

• **Detect** - A check mark in this column indicates detection is enabled. A green check mark appears in the **Detect** column any time you make a change from the global or category detection settings.

• **Danger Level** - Defines the attack signature as **Low**, **Medium**, or **High** as defined for the **Signature Groups** panel.

• **Comments** - Displays a brief description of the policy.

• **Configure** - Clicking the edit icon in the **Configure** column of the category header displays the **Edit Anti-Spyware Category** window. Clicking the edit icon in the **Configure** column for an individual signature displays the **Edit Anti-Spyware Signature** window. These windows allow you to define a different action from the global settings for the specific category or signature.

Displaying Spyware Information

In the **Anti-Spyware Policies** panel, clicking on the spyware name link in **Name** column, displays a **SonicALERT** page that provides detailed information about the spyware.

Navigating the Anti-Spyware Policies Panel

The **Items** field displays the panel number of the first category or signature. If you are displaying the first page of a panel, the entry might be **Items 1 to 50 (of 58)**. You can enter a number in the **Items** field to go directly to a specific entry or use the navigation buttons to navigate the panel.

![Items 1 to 50 (of 58)](image)

The SonicWall Anti-Spyware signatures are displayed fifty to a page in the **Anti-Spyware Policies** panel.

NOTE: You can change the default, 50 entries per panel, on the **System Setup | Appliance > Base Settings** page in the **Web Management Settings** section.

Searching the Signature Database

You can search the signature database by entering a search string in the **Lookup Signatures Containing String** field, then clicking icon.

Sorting Category or Signature Entries

Clicking on the **Anti-Spyware Policies** panel headings (**Name**, **ID**, **Prevent**, **Detect**, or **Danger Level**) sorts the panel entries according to the heading. An up arrow by the column header name indicates the entries are sorted in descending order. A down arrow by the column header name indicates the entries are sorted in ascending order.

Configuring Category Policies

You can choose to override the global prevention and detection settings on a category-by-category basis. The global **Prevent All** and **Detect All** settings, which include **High Danger Level Spyware**, **Medium Danger Level Spyware**, and **Low Danger Level Spyware** are configured in the **Anti-Spyware Global Settings** section. Categories can include any combination of Danger Levels as defined in the **Signature Groups** panel.

The available signature categories are listed in the **View Style** menu in the **Anti-Spyware Policies** section. Configuring the prevent and detect behaviors on a category basis affects all the signatures in the category, regardless of the global attack priority settings (Low, Medium, or High).
Topics:

- Overriding Global Prevent and Detect Settings by Category
- Resetting SonicWall Anti-Spyware Configuration to Default

Overriding Global Prevent and Detect Settings by Category

1. Select All categories or an individual category from the Category menu.
2. If you select All Categories, click on the Edit icon in the Configure column for the category you want to change. The Edit Anti-Spyware Category dialog is displayed.
3. If you select an individual category, click on the Edit icon to the right of the Category menu. The Edit Anti-Spyware Category dialog displays.
4. If you want to change the Global Setting for Prevention, select Enable or Disable from the Prevention menu.
5. If you want to change the Global Setting for Detection, select Enable or Disable from the Detection menu.
6. If you want to change the Global Settings for both detection and prevention, select Enable or Disable from the Detection and Prevention menu.
7. The following settings allow you to select specific users/groups, IP address ranges, and schedule objects to be included or excluded from this SonicWall Anti-Spyware category:
 - Included Users/Groups - select the Users/Groups you want included in this SonicWall Anti-Spyware category. The default is All.
 - Excluded Users/Groups - select the Users/Groups you want excluded from this SonicWall Anti-Spyware category. The default None.
 - Included IP Address Range - select the IP address range you want included in this SonicWall Anti-Spyware category. The default All.
 - Excluded IP Address Range - select the IP address range you want excluded from this SonicWall Anti-Spyware category. The default None.
 - Schedule - select the scheduled time you want for the activation of this SonicWall Anti-Spyware category. The default Always on.
8. If you want to change the Log Redundancy Filter setting from the default global setting, uncheck the Use Category Settings box for Log Redundancy Filter (seconds) and enter a time value in seconds.
9. Click OK to save your changes.

TIP: If you select All signatures from the Category menu, all the categories and their signatures are displayed in the Anti-Spyware Policies panel, allowing you to configure both the category and signatures within the category.

Resetting SonicWall Anti-Spyware Configuration to Default

You can remove all custom category and signature settings you created as well as reset global Prevent All and Detect All settings and Log Redundancy Filter (seconds) settings by clicking the Reset Anti-Spyware Settings & Policies button in the Anti-Spyware Global Settings section.

Configuring Signature Policies

Selecting All signatures from the Category menu displays all of the signatures organized within categories. The All signatures option displays every signature in the Anti-Spyware database.
If global Prevent All and Detect All settings are in effect for the category, Global is displayed in the Prevent and Detect columns for the category and all of its signatures.

Selecting a specific signature category, displays the signatures in that category.

NOTE: You cannot import your own customized signatures into SonicWall Anti-Spyware or delete a signature entry.

CAUTION: Use caution when overriding global High Danger Level Spyware and Medium Danger Level Spyware signature behaviors because you can create vulnerabilities. If you make changes and want to restore the default global signature settings, click the Reset Anti-Spyware Settings & Policies button to restore the default settings.

Topics:
- Overriding Global Prevent and Detect Settings by Category
- Resetting SonicWall Anti-Spyware Settings to Default

Overriding Category Detect and Prevent Settings for a Signature

To override category detect and prevent attributes for signatures:

1. In the Anti-Spyware Policies panel, display the signature you want to change. Click the Edit icon in the Configure column for the entry to display the Edit Anti-Spyware dialog.
2. If you want to change the Category Setting for Prevention, select Enable or Disable from the Prevention menu.
3. If you want to change the Category Setting for Detection, select Enable or Disable from the Detection menu.
4. If you want to change the Category Setting for both detection and prevention, select Enable or Disable from the Detection and Prevention menu.
5. The following settings allow you to select specific users/groups, IP address ranges, and schedule objects to be included or excluded from this SonicWall Anti-Spyware signature:
 - Included Users/Groups - select the Users/Groups you want included in this SonicWall Anti-Spyware signature. The default is All.
 - Excluded Users/Groups - select the Users/Groups you want excluded from this SonicWall Anti-Spyware signature. The default None.
 - Included IP Address Range - select the IP address range you want included in this SonicWall Anti-Spyware signature. The default All.
 - Excluded IP Address Range - select the IP address range you want excluded from this SonicWall Anti-Spyware signature. The default None.
 - Schedule - select the scheduled time you want for the activation of this SonicWall Anti-Spyware signature. The default Always on.
6. If you want to change the Log Redundancy Filter setting from the Category setting, uncheck the Use Category Settings box for Log Redundancy Filter (seconds) and enter a time value in seconds.
7. Click OK to save your changes.

Resetting SonicWall Anti-Spyware Settings to Default

You can remove all custom category and signature settings you created as well as reset global Prevent All and Detect All settings and Log Redundancy Filter (seconds) settings by clicking the Reset Anti-Spyware Settings & Policies button in the Anti-Spyware Global Settings section.
Configuring SonicWall Real-Time Blacklist

Real-Time Black List Filtering

SMTP Real-Time Black List (RBL) is a mechanism for publishing the IP addresses of SMTP spammers use. There are a number of organizations that compile this information both for free: http://www.spamhaus.org, and for profit: https://ers.trendmicro.com/.

NOTE: SMTP RBL is an aggressive spam filtering technique that can be prone to false-positives because it is based on lists compiled from reported spam activity. The SonicOS implementation of SMTP RBL filtering provides a number of fine-tuning mechanisms to help ensure filtering accuracy.

Topics:

- Real-Time Black List Filtering
- Configuring the RBL Filter
RBL list providers publish their lists using DNS. Blacklisted IP addresses appear in the database of the list provider’s DNS domain using inverted IP notation of the SMTP server in question as a prefix to the domain name. A response code from 127.0.0.2 to 127.0.0.9 indicates some type of undesirability:

For example, if an SMTP server with IP address 1.2.3.4 has been blacklisted by RBL list provider sbl-xbl.spamhaus.org, then a DNS query to 4.3.2.1.sbl-xbl.spamhaus.org will provide a 127.0.0.4 response, indicating that the server is a known source of spam, and the connection will be dropped.

NOTE: Most spam today is known to be sent from hijacked or zombie machines running a thin SMTP server implementation. Unlike legitimate SMTP servers, these zombie machines rarely attempt to retry failed delivery attempts. Once the delivery attempt is blocked by RBL filter, no subsequent delivery attempts for that same piece of spam will be made.

Configuring the RBL Filter

Topics:
- Enabling RBL Blocking
- Adding RBL Services
- Configuring User-Defined SMTP Server Lists
- Testing SMTP IP Addresses

Enabling RBL Blocking

When **Enable Real-time Black List Blocking** is enabled in the **Real-time Black List Settings** section on the RBL Filter page, inbound connections from hosts on the WAN or outbound connections to hosts on the WAN are checked against each enabled RBL service with a DNS request to the DNS servers configured under **RBL DNS Servers**.

The RBL DNS Servers menu allows you to specify the DNS servers. You can choose **Inherit Settings from WAN Zone** or **Specify DNS Servers Manually**. If you select **Specify DNS Servers Manually**, enter the DNS server addresses in the **DNS Server** fields.

When you have finished, click **Accept**.
The DNS responses are collected and cached. If any of the queries result in a blacklisted response, the server will be filtered. Responses are cached using TTL values, and non-blacklisted responses are assigned a cache TTL of 2 hours. If the cache fills up, then cache entries are discarded in a FIFO (first-in-first-out) fashion.

The IP address check uses the cache to determine if a connection should be dropped. Initially, IP addresses are not in the cache and a DNS request must be made. In this case the IP address is assumed innocent until proven guilty, and the check results in the allowing of the connection. A DNS request is made and results are cached in a separate task. When subsequent packets from this IP address are checked, if the IP address is blacklisted, the connection will be dropped.

Adding RBL Services

You can add additional RBL services in the **Real-time Black List Services** section.

To add an RBL service, click the **Add** button. In the **Add RBL Domain** window, you specify the RBL domain to be queried, enable it for use, and specify its expected response codes. Most RBL services list the responses they provide on their Web site, although selecting **Block All Responses** is generally acceptable.

Statistics are maintained for each RBL Service in the **RBL Service** table, and can be viewed with a mouseover of the (statistics) icon to the right on the service entry.

Configuring User-Defined SMTP Server Lists

The **User Defined SMTP Server Lists** section allows for Address Objects to be used to construct a white-list (explicit allow) or black-list (explicit deny) of SMTP servers. Entries in this list will bypass the RBL querying procedure.
Configuring SonicWall Real-Time Blacklist

Topics:
- Configuring a White List
- Configuring a Black List

Configuring a White List

For example, to ensure that you always receive SMTP connections from a partner site's SMTP server:

1. Create an Address Object for the server using the Add Servers: Add button. The Add Address Object window appears.

2. Configure the Address Object.

3. Click OK. The Address Object will be added to the RBL User White List in the User-Defined SMTP Server Lists table.

4. Click the edit icon in the Configure column of the RBL User White List row. The Edit Address Object window displays.

5. Add the Address Object by selecting it and clicking the right arrow.

6. Click OK.

The table will be updated, and that server will always be allowed to make SMTP exchanges.

Configuring a Black List

1. Click the Edit icon in the Configure column of the RBL User Black List row. The Edit Address Object window displays.
2 Add the Address Object by selecting it and clicking the right arrow.

3 Click OK.

Testing SMTP IP Addresses

The Tools > System Diagnostics page on the INVESTIGATE view also provides a Real-time Black List Lookup feature that allows for SMTP IP addresses (or RBL services, or DNS servers) to be specifically tested.

For a list of known spam sources to use in testing, refer to: http://www.spamhaus.org/sbl/latest/.
Configuring Geo-IP Filters

NOTE: The Geo-IP Filtering feature is available on TZ300 series and above appliances.

The Geo-IP Filter feature allows you to block connections to or from a geographic location. The SonicWall firewall uses the IP address to determine the location of the connection. The GEO-IP Filter feature also allows you to create custom country lists that affect the identification of an IP address.

The Geo-IP Filter feature also allows you to create a custom message when you block a web site.

You can also use the Geo-IP Filter Diagnostics tool to show resolved locations, monitor Geo-IP cache statistics, custom countries statistics, and look up GEO-IP servers.

Topics:
- Configuring Geo-IP Filtering
- Creating a Custom Country List
- Customizing Web Block Page Settings
- Using Geo-IP Filter Diagnostics

Configuring Geo-IP Filtering

To configure Geo-IP Filtering:

1. Navigate to **Security Configuration | Security Services > Geo-IP Filter page.**
2. To block all connections to and from specific countries, select the **Block connections to/from countries listed in the table below** checkbox. This option is selected by default.

 If this option is enabled, all connections to/from the selected list of countries are blocked. You can specify an exclusion list to exclude this behavior for selected IPs, as described below in Step 10.

 When this option is selected, the next two options become available.

3. Select one of the following two modes for Geo-IP Filtering:
 - **All Connections**: All connections to and from the firewall are filtered. This option is selected by default.
 - **Firewall Rule-Based Connections**: Only connections that match an access rule configured on the firewall are filtered for blocking.

4. To block all connections to public IPs when the Geo-IP database is not downloaded, select the **Block all connections to public IPs if GeoIP DB is not downloaded** option. This option is not selected by default.

5. To enable your custom list, select the **Enable Custom List** checkbox. This option is not selected by default.

 If the **Enable Custom List** checkbox is:
 - Not selected, then only the firewall's country database is searched. Go to Step 6.
 - Selected, the **Override Firewall Countries By Custom List** checkbox becomes available.

 Enabling a custom list by selecting the **Enable Custom List** checkbox can affect country identification for an IP address. If the **Override Firewall Countries By Custom List** is:
 - Not selected also, then country identification is done in this order:
 1) The firewall country database is searched. If the identification is not resolved, then:
 2) The custom country list is searched.
 - Also selected, then country identification is done in this order:
 1) The custom country database is searched. If the identification is not resolved, then:
 2) The firewall country list is searched.

 In either case, action is taken according to the resolution.

6. To log Geo-IP Filter-related events, select **Enable logging**. This option is not selected by default.

7. Under **Countries**, in the **Selected Countries** table, select the countries to be blocked. By default, no countries are blocked.

8. Drag the selected countries in the **Available Countries** table to the **Selected Countries** table.
9. If you want to block any countries that are not listed, select the **Block All UNKNOWN countries** option. All connections to unknown public IPs are blocked. This option is not selected by default.

10. Optionally, you can configure an exclusion list of all connections to approved IP addresses by doing one of these:

 - Select an address object or address group from the **Geo-IP Exclusion Object** drop-down menu. The default is **Default Geo-IP and Botnet Exclusion Group**.

 - Create a new address object or address group by selecting **Create new address object...** or **Create new address group...** from the **Geo-IP Exclusion Object** drop-down menu.

 The **Geo-IP Exclusion Object** is a network address object group that specifies a group or a range of IP addresses to be excluded from the Geo-IP filter blocking. All IP addresses in the address object or group are allowed, even if they are from a blocked country.

 For example, if all IP addresses coming from Country A are set to be blocked and an IP address from Country A is detected, but it is in the **Geo-IP Exclusion Object** list, then traffic to and from this IP address is allowed to pass.

 For this feature to work correctly, the country database must be downloaded to the firewall. The **Status** indicator at the top right of the **Custom List** page turns yellow if this download fails. Green status indicates that the database has been successfully downloaded. Click the **Status** button to display more information.

For the country database to be downloaded, the firewall must be able to resolve the address, utmgbdata.global.sonicwall.com.
When a user attempts to access a web page that is from a blocked country, a block page message is displayed on the user’s web browser.

NOTE: If a connection to a blocked country is short-lived and the firewall does not have a cache for the IP address, then the connection may not be blocked immediately. As a result, connections to blocked countries may occasionally appear in the App Flow Monitor. However, additional connections to the same IP address are blocked immediately.

11 Click the **Accept** button at the top of the page to enable your changes.

Creating a Custom Country List

![Image of Geo-IP Filters configuration](image)

<table>
<thead>
<tr>
<th>Address Object</th>
<th>Name given to the address object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Flag icon (if known) and name of country.</td>
</tr>
<tr>
<td>Comments</td>
<td>Comment made when address object was created.</td>
</tr>
<tr>
<td>Configure</td>
<td>Contains an Edit icon and a Delete icon.</td>
</tr>
<tr>
<td>Total</td>
<td>Displays the number of entries in the Custom List.</td>
</tr>
</tbody>
</table>

An IP address can be associated with a wrong country. This kind of misclassification can cause incorrect/unwanted filtering of an IP address. Having a custom country list can solve this problem by overriding the firewall country associated with a particular IP address.

Topics:

- Creating a Custom List
- Editing a Custom List Entry
- Deleting Custom List Entries
Creating a Custom List

IMPORTANT: For the firewall to use the custom country list, you must enable it as described in Configuring Geo-IP Filtering.

To create a custom country list:

2. Select Enable Custom List.

3. Click Custom List.

4. Click Add. The Add Custom List dialog displays.

5. Select an IP address object or create a new address object from the IP Address drop-down menu:

 IMPORTANT: An address object cannot overlap any other address objects in the custom country list. Different address objects, however, can have the same country ID.

 - Create new address object... – the Add Address Object dialog displays.

 You create a new address object as described in SonicWall SonicOS 6.5 Policies, with these restrictions:

 - Allowed types are
• Host
• Range
• Network
• A group of any combination of these types

All other types are disallowed types and cannot be added to the custom country list.

• Create new address group... – the Add Address Object Group dialog displays.

You create a new address object as described in SonicWall SonicOS 6.5 Policies

• Already defined address object or address group.

6 Select a country from the Country drop-down menu.
7 Optionally, add a comment in the Comment field.
8 Click OK.

Editing a Custom List Entry

To edit a custom list entry:

1 On the Custom List view, click the Edit icon in the Configure column for the entry to be edited. The Add Custom List dialog displays with the IP address and any comment about the entry.

2 Select the country from the Country drop-down menu and make any other changes.
3 Click OK. The Custom List table is updated.

Deleting Custom List Entries

To delete a custom list entry:

1 Do one of these:
 • Click the Delete icon in the Configure column for the entry.
 • Select the checkbox for the entry and then click the Delete button.

A confirmation message displays.
To delete multiple entries:
1. Select the checkboxes of the entries to be deleted. The **Delete** button becomes available.
2. Click the **Delete** button. A confirmation message displays.
3. Click **OK**.

To delete all entries:
1. Click the checkbox in the table header.
2. Click the **Delete** button. A confirmation message displays.
3. Click **OK**.

Customizing Web Block Page Settings

The Geo-IP Filter has a default message that is displayed when a user attempts to access a blocked page. You can have the message display detailed information, such as the reason why this IP address is blocked as well as the IP address and the country from which it was detected. You also can create a custom message and include a custom logo.
To create a custom web-block message:

2. Click Web Block Page.

3. Ensure the Include Geo-IP Filter Block Details option is selected. When enabled, this option shows block details such as reason for the block, IP address, and country. When disabled, no information is displayed. By default, this option is selected. This option is selected by default.

4. Do one of the following:
 - To use the default message displayed in the Alert text field, This site has been blocked by the network administrator., click the Default Blocked Page button and then go to Step 6.
 - Specify a custom message to be displayed in the Geo-IP Filter Block page in the Alert text field. Your message can be up to 100 characters long.

5. Optionally, in the Base64-encoded Logo Icon field, you can specify a Base 64-encoded GIF icon to be displayed instead of the default SonicWall logo.

 NOTE: Ensure the icon is valid and make the size as small as possible. The recommended size is 400 x 65.

6. To see a preview of your customized message and logo (or the default message and logo), click the Preview button. A warning message displays.
7 Click OK. The Web Site Blocked message displays.

8 Close the Web Site Blocked message.

9 Click the Accept button.

Using Geo-IP Filter Diagnostics

The Security Services > Geo-IP Filter page has a Diagnostics view with several tools:

- Show Resolved Locations
- Geo-IP Cache Statistics
- Check GEO Location Server Lookup
- Incorrectly Marked Address
Show Resolved Locations

When you click the **Show Resolved Locations** button, a pop-up table of resolved IP addresses displays this information:

- Index
- IP Address
- Country

Geo-IP Cache Statistics

The **Geo-IP Cache Statistics** table contains this information:

- Location Server IP
- Resolved Entries
- Unresolved Entries
- Current Entry Count
- Max. Entry Count
- Location Map Count

Custom Countries Statistics

The **Custom Countries Statistics** table contains this information:

- No of Entries
- No of Times Called
- No of Times Not Looked-up
- No of Times Resolved
The **Custom Countries Statistics** table contains this information about the number of entries in the list and the number of times lookups have occurred for the entries:

- No of Entries
- No of Times Called
- No of Times Not Looked-up
- No of Times Resolved

Check GEO Location Server Lookup

The Geo-IP Filter also provides the ability to look up IP addresses to determine:

- Domain name or IP address
- The country of origin and whether it is classified as a Botnet server

NOTE: The similar Botnet Location Server Lookup tool can also be accessed from the **System Services > Botnet Filter** page. The Geo Location and Botnet Server Lookup tool can also be accessed from the **System > Diagnostics** page.

To look up a GEO server:

1. Go to the **Check GEO Location Server Lookup** section at the bottom of the **Diagnostics** view.

 ![Check GEO Location Server Lookup](image)

2. Enter the IP address in the **Lookup IP** field.

3. Click **Go**. Details on the IP address are displayed below the **Result** heading.

 ![Result](image)

Incorrectly Marked Address

If you think an address is marked as part of a country incorrectly, you can report the issue by clicking on the **Geo-IP Status Lookup** link in the **Note** at the bottom of the **Security Configuration | Security Services > Geo-IP Filter** page. The link displays the **Submit IP for Geolocation Review** page.

Note: If you believe that a certain address is marked as part of a country incorrectly, you can go to **Geo-IP Status Lookup** to report this issue.
Configuring Botnet Filters

NOTE: The Botnet Filtering feature is available on TZ 300 series and above appliances.

Note: If you believe that a certain address is marked as a botnet incorrectly, you can go to Botnet IP Status Lookup to report this issue.

- Custom Botnet List
- Dynamic Botnet List
- Dynamic Botnet List Server
- Web Block Page
- Diagnostics
- Settings

The Botnet Filtering feature allows you to block connections to or from Botnet command and control servers and to make custom Botnet lists.

The Botnet Filtering feature also allows you to create a custom message when you block a web site or to allow dynamic Botnet HTTP authentication.

You can also use the Botnet Filtering Diagnostics tool to show Botnets, monitor Botnet cache statistics, custom Botnet statistics, and look up Botnet servers.

Topics:

- Configuring Botnet Filtering
- Creating a Custom Botnet List
- Configuring Dynamic HTTP Authentication on page 207
- Customizing Web Block Page Settings
- Using Botnet Filter Diagnostics
Configuring Botnet Filtering

To configure Botnet filtering:

2. To block all servers that are designated as Botnet command and control servers, select the Block connections to/from Botnet Command and Control Servers option. All connection attempts to/from Botnet command and control servers will be blocked. This option is not selected by default.

 If this option is selected, the radio buttons and the Block all connections to public IPs if BOTNET DB is not downloaded option become available.

 To exclude selected IPs from this blocking behavior, use exclusion lists as described in the following steps and/or create a custom Botnet list as described in Creating a Custom Botnet List.

3. If Block connections to/from Botnet Command and Control Servers is selected, these options become available:
 a. Select one of the following two modes for Botnet Filtering:
 - All Connections: All connections to and from the firewall are filtered. This is the default Botnet block mode.
 - Firewall Rule-Based Connections: Only connections that match an access rule configured on the firewall are filtered.
 b. If you want to block all connections to public IPs when the Botnet database is not downloaded, select the Block all connections to public IPs if BOTNET DB is not downloaded. This option is not selected by default.

4. To enable the Custom Botnet List, select the Enable Custom Botnet List checkbox. This option is not selected by default.

 If the Enable Custom Botnet List checkbox is not selected, then only the firewall’s Botnet database is searched. Go to Step 5.

 Enabling a custom list by selecting the Enable Custom Botnet List checkbox can affect country identification for an IP address:
 a. During Botnet identification, the custom Botnet list is searched first.
 b. If the IP address is not resolved, the firewall’s Botnet database is searched.
If an IP address is resolved from the custom Botnet list, it can be identified as either a Botnet IP address or a non-Botnet IP address, and action taken accordingly.

5 Select **Enable logging** to log Botnet Filter-related events.

6 Optionally, you can configure an exclusion list of all IPs belonging to the configured address object/address group. All IPs belonging to the list are excluded from being blocked. To enable an exclusion list, select an address object or address group from the **Botnet Exclusion Object** drop-down menu.

![Botnet Exclusion Object](image)

The default exclusion object is Default Geo-IP and Botnet Exclusion Group. You can create your own address object or address group object as described in *SonicWall SonicOS 6.5 Policies*.

7 Click the **Accept** button at the top of the page to enable your changes.

Creating a Custom Botnet List

![Custom Botnet List](image)

<table>
<thead>
<tr>
<th>Address Object</th>
<th>Name of the address object or address group object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botnet</td>
<td>Icon indicating whether the entry was defined as a Botnet when created. A black circle indicates a Botnet, a white circle a non-Botnet.</td>
</tr>
<tr>
<td>Comments</td>
<td>Any comments you added about the entry.</td>
</tr>
<tr>
<td>Configure</td>
<td>Contains Edit and Delete icons for the entry.</td>
</tr>
<tr>
<td>Total</td>
<td>Displays the number of entries in the Custom Botnet List.</td>
</tr>
</tbody>
</table>

An IP address can be wrongly marked as Botnet. This kind of misclassification can cause incorrect/unwanted filtering of an IP address. Having a custom Botnet list can solve this problem by overriding the Botnet tag for a particular IP address.

Topics:
- Creating a Custom Botnet List
- Editing a Custom Botnet List Entry
- Deleting Custom Botnet List Entries
Creating a Custom Botnet List

IMPORTANT: For the firewall to use the custom Botnet list, you must enable it as described in Configuring Botnet Filtering.

To create a custom Botnet list:

2. Click **Custom Botnet List**.

3. Click the **Add** button. The **Add Custom Botnet List** dialog displays.

4. Select an IP address object or create a new address object from the **A Botnet IP Address** drop-down menu:
 - **IMPORTANT:** An address object cannot overlap any other address objects in the custom country list. Different address objects, however, can have the same country ID.
 - Create new address object... – the **Add Address Object** dialog displays.
You create a new address object as described in SonicWall SonicOS 6.5 Policies, with these restrictions:

- Allowed types are
 - Host
 - Range
 - Network
 - A group of any combination of the first three types
 All other types are disallowed types and cannot be added to the custom Botnet list.

- Create new address group... – the Add Address Object Group dialog displays.

You create a new address object as described in SonicWall SonicOS 6.5 Policies

- Already defined address object or address group

 5 If this address object is a known Botnet, select the Botnet checkbox.

 6 Optionally, add a comment in the Comment field.

 7 Click OK.

Editing a Custom Botnet List Entry

To edit a custom Botnet list entry:

1 On the Custom Botnet List view, click the Edit icon in the Configure column for the entry to be edited. The Add Custom Botnet List dialog displays the entry.

2 Make your changes.

3 Click OK. The Custom Botnet List table is updated.
Deleting Custom Botnet List Entries

To delete a custom Botnet list entry:

1. Do one of these:
 - Click the Delete icon in the Configure column for the entry.
 - Select the checkbox for the entry and then click the Delete button.

 A confirmation message displays.

 ![Confirmation Message]

2. Click OK.

To delete multiple entries:

1. Select the checkboxes of the entries to be deleted. The Delete button becomes available.
2. Click the Delete button. A confirmation message displays.

 ![Confirmation Message]

3. Click OK.

To delete all entries:

1. Click the checkbox in the table header.
2. Click the Delete button. A confirmation message displays.

 ![Confirmation Message]

3. Click OK.
Configuring Dynamic HTTP Authentication

With SonicOS 6.5.2, username and passwords for HTTP URLs in the dynamic Botnet configuration are accepted, and the information is transmitted in the HTTP header so the firewall has the required information.

To configuring dynamic HTTP authentication:

2. Click Dynamic Botnet List Server.
3. Select Enable botnet list download periodically. This option is not selected by default. The following options become available.
4. Select the frequency of downloads from Download Interval:
 - 5 minutes (default)
 - 15 minutes
 - 1 hour
 - 24 hours
5. Select the protocol in which the firewall has to communicate with the backend server to retrieve the file from Protocol:
 - FTP (default)
 - HTTPS
6. Enter the IP address of the server to which the Botnet list file will be downloaded in the Server IP Address field.
7. Enter the login ID the firewall is to use to connect to the server in the Login ID field.
8. Enter the password the firewall is to use to connect to the server in the **Password** field.

9. Enter the directory path the firewall from which the firewall retrieves the Botnet file in the **Directory Path** field. This server directory path is relative to the default root directory.

10. Enter the name of the file to be downloaded in the **File Name** field.

11. Click **ACCEPT**.

Customizing Web Block Page Settings

The Botnet Filter has a default message that is displayed when a page is blocked. You can customize this message and include your own logo.

To create a custom message and include a custom logo:

1. Navigate to the **Security Services > Botnet Filter** page.

2. Ensure the **Include Botnet Filter Block Details** option is selected. This option is selected by default.
When enabled, this option shows block details such as reason for the block, IP address, and country. When disabled, this option hides all information.

3 Do one of the following:

- To use the default message displayed in the Alert text field, this site has been blocked by the network administrator., click the Default Blocked Page button and then go to Step 4.

- Specify a custom message to be displayed in the Geo-IP Filter Block page in the Alert text field. Your message can be up to 100 characters long.

4 Optionally, in the Base64-encoded Logo Icon field, you can specify a Base 64-encoded GIF icon to be displayed as well.

 NOTE: Ensure the icon is valid and make the size as small as possible. The recommended size is 400 x 65.

5 To see a preview of your customized message and logo (or the default message and logo), click the Preview button. A warning message displays.

6 Click OK. The Web Site Blocked message displays.

7 Close the Web Site Blocked message.

8 Click the Accept button.
Using Botnet Filter Diagnostics

Note: If you believe that a certain address is marked as a botnet incorrectly, you can go to [Botnet IP Status Lookup](#) to report this issue.

Diagnostics

SHOW BOTNETS

<table>
<thead>
<tr>
<th>Botnet Cache Statistics</th>
<th>Custom Botnets Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Server IP:</td>
<td>No of Entries:</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Resolved Entities:</td>
<td>No of Times Called:</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Unresolved Entries:</td>
<td>No of Times Not Locked-up:</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Current Entry Count:</td>
<td>No of Times Resolved:</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Max. Entry Count:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30000</td>
</tr>
<tr>
<td>Botnets Detected:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Check BOTNET Server Lookup

<table>
<thead>
<tr>
<th>LOOKUP IP:</th>
</tr>
</thead>
</table>

| **GO** |
The Security Services > Botnet Filter page has a Diagnostics view with several tools:

- Show Resolved Botnet Locations
- Botnet Cache Statistics
- Custom Botnets Statistics
- Check Botnet Server Lookup

Show Resolved Botnet Locations

When you click on the Show Botnets button, a table of resolved IP addresses displays with this information:

- Index
- IP Address – IP address of the Botnet
Botnet Cache Statistics

The Botnet Cache Statistics table contains this information:

- Location Server IP
- Resolved Entries
- Unresolved Entries
- Current Entry Count
- Max. Entry Count
- Botnets Detected

Custom Botnets Statistics

The Custom Botnets Statistics table contains this information about the number of entries in the list and the number of times lookups have occurred for the entries:

- No of Entries
- No of Times Called
- No of Times Not Looked-up
- No of Times Resolved

Check Botnet Server Lookup

The Botnet Filter also provides the ability to look up IP addresses to determine:

- Domain name or IP address
- Country of origin and whether the server is classified as a Botnet server

NOTE: The Botnet Server Lookup tool can also be accessed from the System > Diagnostics page.
To look up a Botnet server:

1. Go to the Check BOTNET Server Lookup section at the bottom of the Diagnostics view.

 ![Check BOTNET Server Lookup](image)

2. Enter the IP address in the Lookup IP field.
3. Click Go. Details on the IP address are displayed below the Result heading.

 ![Check BOTNET Server Lookup](image)

 Result
 - Lookup IP: 211.234.117.132
 - Result: It is a BOTNET Server

Incorrectly Marked Address

Note: If you believe that a certain address is marked as a botnet incorrectly, or if you believe an address should be marked as a botnet, report this issue at the SonicWall Botnet IP Status Lookup tool by either clicking on the link in the Note at the bottom of the Security Services > Botnet Filter page or going to: SonicWall Botnet IP Status Lookup.
Anti-Spam

- About Anti-Spam
- Viewing Anti-Spam Status
- Enabling and Activating Anti-Spam
- Viewing Anti-Spam Statistics
- Configuring the RBL Filter
- Managing the Junk Summary
- Configuring the Junk Box View
- Configuring Junk Box Settings
- Configuring User-Visible Settings
- Configuring Corporate Allowed and Blocked Lists
- Managing Users
- Configuring the LDAP Server
- Configuring Anti-Spam Logging
- Downloading Anti-Spam Desktop Buttons

NOTE: Anti-Spam is not supported on the SuperMassive 9800.
About Anti-Spam

• Anti-Spam Overview
• What is Anti-Spam?
• Benefits
• How Does the Anti-Spam Service Work?
• Purchasing an Anti-Spam License

Anti-Spam Overview

• Anti-Spam Overview
• What is Anti-Spam?
• Benefits
• How Does the Anti-Spam Service Work?
• Purchasing an Anti-Spam License

What is Anti-Spam?

The Anti-Spam feature provides a quick, efficient, and effective way to add anti-spam, anti-phishing, and anti-virus capabilities to your existing firewall.

In a typical Anti-Spam configuration, you choose to add Anti-Spam capabilities by selecting it in the SonicOS interface and licensing it. The firewall then uses the same advanced spam-filtering technology as the SonicWall Email Security products to reduce the amount of junk email delivered to users.

There are two primary ways inbound messages are analyzed by the Anti-Spam feature:

• Advanced IP Reputation Management
• Cloud-based Advanced Content Management

IP Address Reputation uses the GRID Network to identify the IP addresses of known spammers, and reject any mail from those senders without even allowing a connection. GRID Network Sender IP Reputation Management checks the IP address of incoming connecting requests against a series of lists and statistics to ensure that the
connection has a probability of delivering valuable email. The lists are compiled using the collaborative intelligence of the SonicWall GRID Network. Known spammers are prevented from connecting to the firewall, and their junk email payloads never consume system resources on the targeted systems.

Email that does not come from known spammers is analyzed based on “GRIDprints” generated by SonicWall’s research laboratories and are based on data from millions of business endpoints, hundreds of millions of messages, and billions of reputation votes from the users of the GRID Network. Our Grid Network uses data from multiple SonicWall solutions to create a collaborative intelligence network that defends against the worldwide threat landscape. GRIDprints uniquely identify messages without exposing data contained in the email message.

The Anti-Spam service determines that an email fits only one of the following threats: Spam, Likely Spam, Phishing, Likely Phishing, Virus, or Likely Virus. It uses the following precedence order when evaluating threats in email messages:

- Phishing
- Likely Phishing
- Virus
- Likely Virus
- Spam
- Likely Spam

For example, if a message is both a virus and spam, the message is categorized as a virus as virus is higher in precedence than spam.

If the Anti-Spam service determines that the message is not any of the above threats, it is judged as good email and is delivered to the destination server.

Benefits

Adding anti-spam protection to your firewall increases the efficiency of your system as a whole by filtering and rejecting junk messages before users see them in their inboxes.

- Reduced amount of bandwidth and resources consumed by junk email in your network
- Reduced number of incoming messages sent to the mail server
- Reduced threat to the organization, because users cannot accidentally infect their computers by clicking on virus spam
- Better protection for users from phishing attacks

How Does the Anti-Spam Service Work?

This section describes the Anti-Spam feature, including the SonicWall GRID Network, and how it interacts with SonicOS as a whole. The two points of significant connection with SonicOS are Address and Service Objects. You use the address and service objects to configure the Anti-Spam feature to function smoothly with SonicOS. For example, use the Anti-Spam Service Object to configure NAT policies to archive inbound email as well as sending it through a filter.

The Comprehensive Anti-Spam Service analyzes messages’ headers and contents and uses collaborative GRID printing to block spam email.

Topics:

- GRID Network
- Address and Service Objects
GRID Network

The GRID Connection Management with Sender IP Reputation feature is used by SonicWall Email Security and by the Anti-Spam service in SonicOS. GRID Network Sender IP Reputation is the reputation a particular IP address has with members of the SonicWall GRID Network. When this feature is enabled, email is not accepted from IP addresses with a bad reputation. When SonicOS does not accept a connection from a known bad IP address, mail from that IP address never reaches the email server.

GRID Network Sender IP Reputation checks the IP address of incoming connection requests against a series of lists and statistics to ensure that the connection has a probability of delivering valuable email. The lists are compiled using the collaborative intelligence of the SonicWall GRID Network. Known spammers are prevented from connecting to the firewall, and their junk email payloads never consume system resources on the targeted systems.

Topics:
- Benefits
- GRID Connection Management with Sender IP Reputation and Connection Management Precedence Order

Benefits
- As much as 80 percent of junk email is blocked at the connection level, before the email is ever accepted into your network. Fewer resources are required to maintain your level of spam protection.
- Your bandwidth is not wasted on receiving junk email on your servers, only to analyze and delete it.
- A global network watches for spammers and helps legitimate users restore their IP reputations if needed.

GRID Connection Management with Sender IP Reputation and Connection Management Precedence Order

When a request is sent to your first-touch firewall, the Anti-Spam service evaluates the ‘reputation’ of the requestor. The reputation is compiled from white lists of known-good senders, block lists of known spammers, and denial-of-service thresholds.

If IP Reputation is enabled, the source IP address is checked in this order:

Evaluation order

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow-list</td>
<td>If an IP address is on this list, it is allowed to pass messages through Connection Management. The messages are analyzed by your firewall as usual.</td>
</tr>
<tr>
<td>Block-list</td>
<td>This IP address is banned from connecting to the firewall.</td>
</tr>
<tr>
<td>Reputation-list</td>
<td>If the IP address is not in the previous lists, the firewall checks with the GRID Network to see if this IP address has a bad reputation.</td>
</tr>
<tr>
<td>Defer-list</td>
<td>Connections from this IP address are deferred. A set interval must pass before the connection is allowed.</td>
</tr>
<tr>
<td>DoS</td>
<td>If the IP address is not on the previous lists, the firewall checks to see if the IP address has crossed the Denial of Service threshold. If it has, the appliance uses the existing DoS settings to take action.</td>
</tr>
</tbody>
</table>

Only if the IP address passes all of these tests does the firewall allow that server to make a connection and transfer mail. If the IP address does not pass the tests, there is a message from SonicOS to the requesting server indicating that there is no SMTP server. The connection request is not accepted.
Address and Service Objects

The Anti-Spam feature of SonicOS supports Address and Service Objects to manage a customer’s email server(s). These objects are used by the Anti-Spam Service for its NAT and Access Rule policies. Automatically-created rules are not editable and will be deleted if the Anti-Spam Service is disabled.

When enabled, the Anti-Spam service creates NAT policies and Access Rules to control and redirect email traffic. The policies and rules are visible in the Network > NAT Policies and Firewall Rules pages, but are not editable. These automatically-created policies are only available when the Anti-Spam service is enabled.

When the Anti-Spam service is licensed and activated, the Anti-Spam > Settings page shows a single checkbox to enable Anti-Spam. Selecting the checkbox invokes the Destination Mail Server Policy Wizard if there is no existing custom access rule and NAT policy for an already-deployed scenario. When you set up generated policies, the Anti-Spam service must know where the emails are routed behind the firewall. Specifically it needs the destination mail server IP address and its zone assignment. The Destination Mail Server Policy Wizard is launched if this data cannot be found.

You need the following information for the wizard:

- **Destination Mail Server Public IP Address** – The IP address to which external MTAs (message transfer agents) connect by SMTP.
- **Destination Mail Server Private IP Address** – The internal IP address of the Exchange or SMTP server (behind the firewall).
- **Zone Assignment** – The zone to which the Exchange server is assigned.
- **Inbound Email Port** – The TCP service port number to which emails will be sent, also known as the inbound SMTP port.

Policies and Address Objects created by the wizard are editable and persist even if the Anti-Spam service is disabled.

Topics:

- Objects Created When the Anti-Spam Service Is Enabled
- Objects Created by the Wizard
- Policy and Object Changes

Objects Created When the Anti-Spam Service Is Enabled

This section provides an example of the type of rules and objects generated automatically as Firewall Access Rules, NAT Policies and Service Objects. These objects are not editable and will be removed if the Anti-Spam service is disabled.

The Policies | Rules > Access Rules page shows the generated rules used for Anti-Spam.

<table>
<thead>
<tr>
<th>#</th>
<th>Zone</th>
<th>To</th>
<th>Priority</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Action</th>
<th>Users Incl.</th>
<th>Users Excl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>VPN</td>
<td>WLAN</td>
<td>9</td>
<td>Any</td>
<td>All Interface IPv4 Addresses</td>
<td>HTTPS Management</td>
<td>Allow</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>154</td>
<td>WAN</td>
<td>WAN</td>
<td>4</td>
<td>Any</td>
<td>Public Mail Server Address Group</td>
<td>SMTP (Anti-Spam Inbound Port)</td>
<td>Allow</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>155</td>
<td>WAN</td>
<td>DMZ</td>
<td>1</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>156</td>
<td>WAN</td>
<td>LAN</td>
<td>1</td>
<td>Any</td>
<td>User Mail Server Public IP</td>
<td>SMTP (Anti-Spam Inbound Port)</td>
<td>Allow</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>157</td>
<td>WAN</td>
<td>LAN</td>
<td>2</td>
<td>Any</td>
<td>Default Action WAN IP</td>
<td>SendExternal Anti-Spam Service</td>
<td>Allow</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>158</td>
<td>WAN</td>
<td>LAN</td>
<td>3</td>
<td>Any</td>
<td>Public Mail Server Address Group</td>
<td>SMTP (Anti-Spam Inbound Port)</td>
<td>Allow</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>159</td>
<td>WAN</td>
<td>LAN</td>
<td>4</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
<td>All</td>
<td>None</td>
</tr>
</tbody>
</table>
The rows outlined in red are the access rules generated when Anti-Spam is activated. The row outlined in green is the default rule that Anti-Spam creates if there are no existing mail server policies.

You could also create the following access rules:

- WAN to WAN rule for incoming email (SMTP) from any source to all the WAN IP addresses
- WAN to LAN rule for processed email from Email Security Service to all the WAN IP address using the Anti-Spam service port (default: 10025)

The Anti-Spam Service Object is created in the Policies | Objects > Service Objects page.

Objects Created by the Wizard

Objects created from an administrator’s interaction with the wizard can be edited and stay in the system even if the Anti-Spam service is disabled.

The following considerations apply to the auto-generation of policies:

- A system Address Group Object called the Public Mail Server Address Group is created as a default for the original destination for generated policies. This group contains the Address Object, Destination Mail Server Public IP, which takes the IP address value provided during the wizard.
- If a SonicWall device already has existing policies for SMTP, the following procedures occur:
 - If the existing policy’s original destination is a host-type Address Object, then the generated policies use the Public Mail Server Address Group object as their original destination.
 - If the existing policy’s original destination is a non-host-type Address Object, the generated policies use this non-host type Address Object as their original destination.
• If there is more than one public IP address for SMTP, you can manually add Address Objects to the Public Mail Server Address Group.

Policy and Object Changes

In the diag.html page, the Reset GRID Name Cache button can be used to clear all the entries in the GRID name cache.

The Delete Policies and Objects button can be used to remove Anti-Spam Address and Service Objects and policies that are not deleted when the service is turned off. When this button is clicked, SonicOS attempts to remove all the automatically generated objects and policies. This operation is only allowed when the Anti-Spam service is off.

The other diag.html page options relating to Anti-Spam are:

• Disable SYN Flood Protection for Anti-Spam related connections – SYN Flood protection by default is turned on for SMTP (25) and Anti-Spam service (10025) ports. This disables the protection.

• Use GRID IP reputation check only – When selected, this overrides the probing result and simulates the Anti-Spam service being unavailable (admin down). When an email is sent, it still goes through both the SYN FLOOD check and GRID IP check, but other email scanning is not performed.

Purchasing an Anti-Spam License

The following deployment prerequisites are required to use the Anti-Spam feature:

• A licensed SonicWall network security appliance

• Anti-Spam License for the appliance

• One of the following Microsoft Windows Servers:
 • Windows Server 2012 R2 (64-bit)
 • Windows Server 2012 (64-bit)
 • Windows SBS 2008 R2 Server (64-bit)
 • SBS 2008 (64-bit)
Purchasing an Anti-Spam license for the firewall can be done directly through mySonicWall.com or through your reseller.

NOTE: Your SonicWall network security appliance must be registered with mySonicWall.com before use.

To purchase an Anti-Spam license:

1. Open a Web browser on the computer you use to manage your SonicWall appliance.
2. Enter http://www.mySonicWall.com in the location or address field.
3. Enter your mySonicWall.com account user name and password in the appropriate fields.
4. Click the submit button.
5. Navigate to My Products in the left-hand navigation bar.
6. Select the appliance to which you wish to add Anti-Spam capability.
7. Register for an Anti-Spam license.
8. Login to your appliance’s web management interface.
10. In the Manage Security Services Online section, click the link to activate or renew your license. Alternately, enter your key or keyset in the Manual Upgrade section.
11. Enter your mySonicWall.com login information.

Security Services Summary

Serial Number: C0EAE4A61D0
Viewing Anti-Spam Status

NOTE: Anti-Spam > Status does not apply to the SuperMassive 9800.

View the state of your licensing and monitoring on the MONITOR | Current Status | Anti-Spam Status page. You also can perform checks on domains and IP address to ensure they are valid.

Topics:
- Anti-Spam Service Status
- Monitoring Status
- Email Stream Diagnostics Capture
- MX Record Lookup and Banner Check
- GRID IP Check
Anti-Spam Service Status

The Anti-Spam Service Status section lists this information about the Anti-Spam feature:

- Anti-Spam Service Expiration Date
- License Node Count
- Junk Store Version – If the Junk Store is not installed and enabled, the version is 0.0.0.0.

Monitoring Status

The Monitoring Status section shows the status and statistics of the monitored Anti-Spam services:

- Monitored Services – Lists the services:
 - SonicWall3 Anti-Spam Service
 - SonicWall Junk Store
 - Destination Mail Server

 TIP: By mousing over a monitored service, a pop-up displays the server address.

- Current Status – Shows the current status of each service. Mousing over the small triangle icon in the heading displays a pop-up description of the statuses:

 - **Operational** (green) – The monitored service is up and running.
- **Unavailable** (red) – The monitored service is detected as down. Check connections to the remote system.
- **Unknown** (red) – Probing of the monitored services has just started and its status is not known at the moment. If it is a local service, ensure it is installed.

- **Statistics** – contains a Statistics icon for each service. When moused over, the icon displays a pop-up description of the statistics collected about the service:

 ![Probe Statistics](image)

 - **Successes** – Number of successful probes.
 - **Failures** – Number of unsuccessful probes.
 - **Success Rate** – The percentage of total probes that were successful.

Email Stream Diagnostics Capture

The Email Stream Diagnostics Capture section captures SMTP-related traffic passing through the firewall and provides application data-formatted report of the captured data.

NOTE: The report only contains inbound traffic.

The status of the trace is displayed:

- **Trace status:**
 - ![Active](image)
 - ![Off](image)
- **Buffer size**
- **Buffer is % full**
- **MB of buffer lost**

To create an application-formatted report on the SMTP-related traffic passing through your firewall:

1. Click the **Start Trace** button.
2. Stop the capture at any time by clicking the **Stop Trace** button.
3. Click **Download Data** to download the report to a `packet-hd.html` file. A warning message displays.
4 Click OK. The Open packet-dh.html dialog displays.

5 Select to:
 - Open the file in your browser by selecting a browser in the Open with (default) drop-down menu.
 - Save the file selecting Save File.

6 Click OK. If you opened the file, it is downloaded to your browser:

To clear the statistics:

1 Click the Clear Capture button.
MX Record Lookup and Banner Check

In the MX Record Lookup and Banner Check section, you can perform:

- An MX Record lookup for a given domain name.
- A connection check to the resulting host server or supplied IP address to retrieve the SMTP banner.

Your DNS servers are displayed by default in the DNS Server 1/2/3 fields; they cannot be changed. The SMTP port is displayed in the SMTP Port field.

When you enter a domain name or IP address, the Comprehensive Anti-Spam Service attempts to connect to that server and retrieve the SMTP banner. This feature allows you to verify that an email sender is not spoofing an address to appear more legitimate.

To look up the MX record of an emailer or domain:

1. Enter the domain name or IP address in the Lookup name or IP field.
2. Click Go. The results are displayed.

The results include the domain name or IP address that you entered, the DNS server from your list that was used, the resolved email server domain name and/or IP address, and the banner received from the domain server or a message that the connection was refused. The contents of the banner depends on the server you are looking up.
GRID IP Check

The GRID IP Check section allows you to perform a SonicWall GRID Network IP reputation check on a given host IP address. For more information on GRID networks, refer to the GRID Network.

To perform a GRID IP reputation check:
1. Enter an IP address in the Host IP Address field.
2. Click Go. The results are displayed.

Answer: 10.203.13.28 is UNLISTED.
Enabling and Activating Anti-Spam

NOTE: Anti-Spam does not apply to the SuperMassive 9800.

The Anti-Spam > Base Setup page allows you to activate the Anti-Spam feature, configure email threat categories, modify access lists, and set advanced options.

Topics:

- Activating Anti-Spam
- Installing the Junk Store
- Configuring Email Threat Categories
- Configuring Access Lists
- Configuring Advanced Options
Activating Anti-Spam

After you have registered Anti-Spam, activate it to start your appliance-level protection from spam, phishing, and virus messages.

To activate Anti-Spam:

1. Navigate to the Anti-Spam > Base Setup page.

2. Click Enable Anti-Spam Service to activate the Anti-Spam feature. A message displays describing the effects of enabling the Anti-Spam Service and requesting agreement to proceed.

3. To proceed, click the Proceed button. Another message about the mail server to be used displays.

4. Click the Next button. A dialog requesting information about the server displays. The dialog’s settings are populated with information taken from the system.

5. Optionally, change the information.

6. Click Next. A message displays explaining what is created during the installation.

7. Click Confirm.

When the Anti-Spam application is installed, you can:

- Download and install the Junk Box; see Installing the Junk Store
- Configure the email threat categories; see Configuring Email Threat Categories.
Installing the Junk Store

Anti-Spam can create a Junk Store on your Microsoft Exchange Server. The Junk Store quarantines messages for end-user analysis and provides statistics. Log in to your Exchange system, then open a browser to log in to the management interface, and install the Junk Store.

NOTE: While SonicWall supports non-Exchange SMTP servers, such as Sendmail and Lotus Domino, it is not required to install the Junk Store on one of these servers. Similar to the SonicWall Email Security product, the CASS 2.0 feature allows you to install the Junk Store on a stand-alone server.

To fully utilize the newest functionality available with CASS 2.0, SonicWall recommends installing Junk Store on a stand-alone server.

To install the Junk Store:

1. Log in to your Exchange system.
2. Open a web browser.

 IMPORTANT: To download and install the SonicWall Junk Store application, you need the following on the system where you will install the Junk Store application:

 • Internet Explorer 6 or above
 • Microsoft Exchange Server
 • Email Downloader ActiveX component for IE

3. Log in to the SonicOS interface.
4. Navigate to the **Anti-Spam > Settings** page.
5. Go to the **SonicWall Junk Store Installer** section.

6. Click the **Junk Store Installer** icon to install the junk store on your Windows server.

 NOTE: The first time the Junk Store application is installed, it takes about 5 - 15 minutes for the Junk Store to be operational.

7. If your browser warns you that the Web site is trying to load the SonicWall Email Security add-on:

 a. Click in the Information Bar.
 b. Select **Install ActiveX Control** in the pop-up menu. The Security Warning Screen displays.

8. Click **Install** to install the ActiveX Control.

9. On the **Anti-Spam > Base Setup** page, click the **Junk Store Installer** icon again. A progress bar is displayed on the page.
10. The installer launches when it is fully downloaded.

 NOTE: Migrating data to the Junk Store may take a long time to complete.
11 Navigate to the MONITOR | Current Status | Anti-Spam Status page and verify that the SonicWall Junk Store is Operational.

![Anti-Spam Service Status and Monitoring Status](image)

Configuring Email Threat Categories

When Anti-Spam is activated, set your preferences. After these are configured, your email is filtered and sorted according to your configuration.

To set default settings for users' messages:

1. On the Anti-Spam > Base Setup page, scroll to the Email Threat Categories section.

2. Choose default settings for messages that contain or may contain spam, phishing, and virus issues; see Email Threat Category Settings: Options for options available in the drop-down menus:
 - Likely Spam (default: Store in Junk Box)
 - Definite Spam (default: Permanently Delete)
 - Likely Phishing (default: Tag with [LIKELY_PHISHING])
 - Definite Phishing (default: Store in Junk Box)
 - Likely Virus (default: Store in Junk Box)
 - Definite Virus (default: Permanently Delete)
Email Threat Category Settings: Options

<table>
<thead>
<tr>
<th>Category</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtering off</td>
<td>Anti-Spam does not scan and filter any email for this threat category, so all the email messages are delivered to the recipients.</td>
</tr>
<tr>
<td>Tag With [TAG]</td>
<td>The email is tagged with a term in the subject line:</td>
</tr>
<tr>
<td></td>
<td>• [LIKELY_SPAM]</td>
</tr>
<tr>
<td></td>
<td>• [SPAM]</td>
</tr>
<tr>
<td></td>
<td>• [LIKELY_PHISHING]</td>
</tr>
<tr>
<td></td>
<td>• [PHISHING]</td>
</tr>
<tr>
<td></td>
<td>• [LIKELY_VIRUS]</td>
</tr>
<tr>
<td></td>
<td>• [VIRUS]</td>
</tr>
<tr>
<td></td>
<td>Selecting this option allows the user to have control of the email and can junk it if it is unwanted.</td>
</tr>
<tr>
<td>Store in Junk Box</td>
<td>The email message is stored in the Junk Box. It can be unjunked by users and administrators with appropriate permissions.</td>
</tr>
<tr>
<td>Permanently Delete</td>
<td>The email message is permanently deleted.</td>
</tr>
<tr>
<td></td>
<td>CAUTION: If you select this option, your organization risks losing wanted email.</td>
</tr>
</tbody>
</table>

If you are using more than one domain, choose the Multiple Domains option and contact SonicWall or your SonicWall reseller for more information.

Configuring Access Lists

The two lists in the **User-defined Access Lists** section allow you to manage static allow and reject lists by designating which clients are allowed or denied connection to deliver email.

NOTE: Entry settings in these lists take precedence over GRID IP reputation check results.

To configure the lists:

1. On the **Anti-Spam > Base Setup** page, scroll to the **User-defined Access Lists** section.
2 Click the **Edit** icon for the list, **Allow Client List** or **Reject Client List**, you want to configure. The **Allow/Reject Client List** dialog displays.

![Allow/Reject Client List dialog](image)

3 Select items from the left column you want to add to the Allow List.

4 Click the **Right Arrow** button.

To remove items from the Allow List:
 a Select the item(s) from the Allow List.
 b Click the **Left Arrow** button.

5 When finished, click the **OK** button.

To add a host to the lists:

1 Scroll to the **User-defined Access Lists** section.

2 Click the **Add Host** icon. The **Add Host to Allow/Reject List** dialog displays.

![Add Host to Allow/Reject List dialog](image)

3 Enter a name for the host in the **Name** field.

4 Select the type of host from the **Type** drop-down menu. The following setting(s) change, depending on the host type selected.

5 If you selected:
 - **Host** (default) – enter the IP address in the **IP Address** field.
 - **Range** – enter the starting and ending IP addresses in the **Starting IP Address** and **Ending IP Address** fields.

![Range setting](image)

 - **FQDN** – enter the FQDN hostname in the **FQDN Hostname** field.

![FQDN setting](image)

6 Click **OK**.
Configuring Advanced Options

Anti-Spam Advanced Settings

<table>
<thead>
<tr>
<th>Setting type</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
</table>
| Anti-Spam Advanced Settings | Allow/Reject delivery of unprocessed mails when SonicWall Anti-Spam Service is unavailable | If the Anti-Spam service is not enabled or unavailable for some other reason, you can choose to let all unprocessed emails go through or to reject all unprocessed emails. Spam messages are delivered to users as well as good email. Choose from the drop-down menu:
 • Allow (default)
 • Reject |
| Tag & Deliver/Delete Emails | Tag and Deliver/Delete Emails when SonicWall Junk Store is unavailable | If Junk Store cannot accept spam messages, you can choose to delete them or deliver them with cautionary subject lines such as [Phishing] Please renew your account. Choose from the drop-down menu:
 • Tag & Deliver (default)
 • Delete |

Monitoring Service Probes

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Interval (minutes)</td>
<td>5</td>
</tr>
<tr>
<td>Probe Timeout (seconds)</td>
<td>30</td>
</tr>
<tr>
<td>Success Count Threshold</td>
<td>1</td>
</tr>
<tr>
<td>Failure Count Threshold</td>
<td>3</td>
</tr>
</tbody>
</table>

Destination Mail Server Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Public IP Address</td>
<td>10.203.13.28</td>
</tr>
<tr>
<td>Server Private IP Address</td>
<td>10.203.12.20</td>
</tr>
<tr>
<td>Inbound Email Port</td>
<td>25</td>
</tr>
</tbody>
</table>

Junk Store Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Destination Mail Server</td>
<td>Private Address as Junk Store Address</td>
</tr>
<tr>
<td>Junk Store IP Address</td>
<td>10.203.13.28</td>
</tr>
</tbody>
</table>

In the Advanced Options section, you can set the email options described in Anti-Spam > Base Settings: Advanced Options.
SonicWall SonicOS 6.5 Security Configuration

Enabling and Activating Anti-Spam

Monitoring Service Probes

<table>
<thead>
<tr>
<th>Setting type</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Service Probes</td>
<td>Probe Interval (minutes)</td>
<td>Set the timer frequency, in minutes, for probing Email Security components in the WAN and LAN networks. The minimum time is 1 minute, the maximum is 60 minutes, and the default is 5 minutes.</td>
</tr>
<tr>
<td></td>
<td>Probe Timeout (seconds)</td>
<td>Set the time, in seconds, for the probe to wait for response from the target before flagging as failure. The minimum time is 30 seconds, the maximum is 300 seconds, and the default is 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>Success Count Threshold</td>
<td>Set the number of consecutive successful responses before declaring the entity as operational. The minimum number is 1 response, the maximum is 10 responses, and the default is 1 response.</td>
</tr>
<tr>
<td></td>
<td>Failure Count Threshold</td>
<td>Set the number of consecutive successful responses before declaring the entity as unreachable. The minimum number is 1 response, the maximum is 10 responses, and the default is 3 response.</td>
</tr>
</tbody>
</table>

Destination Mail Server Settings

<table>
<thead>
<tr>
<th>Setting type</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Mail Server Settings</td>
<td>Server Public IP Address</td>
<td>The IP address of the server that is available for external connections. MTAs use this WAN IP address for SMTP connection. This number is populated by the address you specified when activating and installing Anti-Spam and Junk Store. You can change the address.</td>
</tr>
<tr>
<td></td>
<td>Server Private IP Address</td>
<td>The IP address of the server for internal traffic. This is the internal mail server IP address behind the appliance. This number is populated automatically by the address you specified when activating and installing Anti-Spam and Junk Store. You can change the address.</td>
</tr>
<tr>
<td></td>
<td>Inbound Email Port</td>
<td>The TCP service port your appliance has open to receive inbound emails. The minimum is 0, the maximum is 65535, and the default is function generated.</td>
</tr>
</tbody>
</table>

Junk Store Settings

<table>
<thead>
<tr>
<th>Setting type</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
</table>
| Junk Store Settings | Use Destination Mail Server Private Address as Junk Store Address | If the Junk Store is on the destination mail server, select the checkbox. The address is populated automatically by the address you specified when activating and installing Anti-Spam and Junk Store. You can change the address. This checkbox is selected by default, and the Junk Store IP Address field is dimmed. **To change the address:**
 1. Uncheck the checkbox. The Junk Store IP Address field becomes available.
 2. Enter the Junk Store IP address of where the server is located. |

Others

<table>
<thead>
<tr>
<th>Setting type</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others</td>
<td>Enable Email Subsystem Detection</td>
<td>Enables discover of available email system resources in the network. This checkbox is selected by default.</td>
</tr>
</tbody>
</table>

SonicWall SonicOS 6.5 Security Configuration

Enabling and Activating Anti-Spam

235
Viewing Anti-Spam Statistics

NOTE: Anti-Spam > Statistics does not apply to the SuperMassive 9800.

View the statistics for your Anti-Spam feature on the MONITOR | Event Summaries > Spam Statistics page:

- **Total Number of Messages Processed** – The total number of messages processed since the Anti-Spam feature was enabled.
- **Total Number of Junk Messages** – The total number of junk messages processed since the Anti-Spam feature was enabled.
- **Recorded Since** – The date and time when the Anti-Spam feature was enabled.
- **Threats** – Lists the types of service and threats and the total number of each type of service provided and threat blocked:
 - TCP Cookie SYN Flood validation
 - Static Host Reject List
 - SonicWall GRID Reputation Service
 - Likely Spam
 - Definite Spam
 - Likely Phishing
 - Definite Phishing
 - Likely Virus
 - Definite Virus
Configuring Anti-Spam Logging

NOTE: Anti-Spam > Advanced does not apply to the SuperMassive 9800.

The Anti-Spam > Advanced Settings page allows you to download log and system configuration files from your server as well as configure the log level.

Topics:
- Downloading System/Log Files
- Selecting the Amount and Level of Log Information
Downloading System/Log Files

| NOTE: | Some log file names, such as those found in the commonlogs directory, contain a two-digit number such as 12.log. The "12" indicates that the log is for the 12th day of the most recent month. Some log file names end with a digit, such as MlfThumbUpdate_2.log. The "2" indicates that this is an older log. The current log is MlfThumbUpdate.log. The next most recent log is MlfThumbUpdate_0.log, followed by MlfThumbUpdate_1.log, and so forth. Most log data is in Greenwich Mean Time (GMT), not in the local time of the server the logs come from. This applies to the names of the log files as well. |

To download log or system configuration files from your SonicWall Email Security server:

1. Navigate to the Download System/Log Files section of Anti-Spam > Advanced Settings.

2. Select the type of file to download from the Type of file drop-down menu. The Choose specific files list becomes populated with that type of file.

3. From the Choose specific files list, select one or more specific items. To select multiple files, hold down the Shift key or Ctrl key while selecting the files. The Download and Email To... buttons become active.

 | NOTE: | The selected files are combined into a zip file. |

4. Click either:
 - Download button to download the file(s) to your local hard drive.
 - Email To... button to email the file(s). The Send To dialog displays.
a) Enter the sender’s email address in the Send files from this email address field. The default is postmaster.

b) Enter the recipient’s email address in the Recipient email address field.

c) Click the Send button.

NOTE: Emailing very large files and directories can be problematic depending on the limitations of your email system.

Selecting the Amount and Level of Log Information

You can select the level and amount of system report information to be stored in your logs in the Other Settings section.

To configure the level and amount of log information:

1. Navigate to the Other Settings section of Anti-Spam > Advanced Settings.

2. Click the Manage button. The Set Log Level dialog displays.
3 Select the default log level from the Default Log Level drop-down menu; levels are listed from lowest to highest:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trace</td>
<td>lowest level</td>
</tr>
<tr>
<td>debug</td>
<td></td>
</tr>
<tr>
<td>info</td>
<td>default</td>
</tr>
<tr>
<td>warn</td>
<td></td>
</tr>
<tr>
<td>error</td>
<td></td>
</tr>
<tr>
<td>fatal</td>
<td>highest level</td>
</tr>
</tbody>
</table>

NOTE: The higher the default log level, the more events are recorded. For example, the info level also records trace and debug levels.

All logs adhere to the default level set here unless specifically overridden.

4 To make changes to the logs in the Overrides section, deselect the Adhere to default level checkbox. All drop-down menus for all service categories become active.

5 To change the log level for specific services and subservices, from the Select Log Level drop-down menu for the service/subservice to be changed, select the desired log level. The levels are the same as for those in Step 3, plus the adhere option.

NOTE: The default log level for all service and subservice categories is adhere, that is, the log level set by the Default Log Level drop-down menu is used.

6 Optionally, select the number of log files to retain. By default, Junk Box keeps 3 log files for these services:

 - SMTP
 - Replicator
 - Thumbprint Updater
 - Services Monitor
 - Resources Monitor
 - Web UI

When a fourth log file is generated, the oldest log file is discarded, the second oldest becomes the oldest, and the third oldest becomes the second oldest.

 a You can increase the number of logs kept for a service by selecting a number from the Count drop-down menu for that service:

<table>
<thead>
<tr>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

A lower number of logs saves disk space, but older data may not be available. A larger number of logs retains more data, but takes more disk space.

7 Optionally, select a size for the service logs (see Step 6) from the Size drop-down menus. The default size of each log is 10 Mb.

You can increase the size of the logs, in 10 MB increments, from 10 Mb (default) to 100 Mb. A smaller log size saves disk space, but larger logs contain more data.

IMPORTANT: Changing the size of a log requires restarting the Tomcat server.

8 Click the Apply Changes button to save any changes made.

To return the logging level to default value:

1 Click the Reset to Defaults button.
Configuring the RBL Filter

NOTE: The Anti-Spam service is an advanced superset of the standard SonicOS RBL Filtering. When Anti-Spam is enabled, therefore, RBL Filtering is disabled automatically and a message displays with that information and a link to the Anti-Spam > Base Setup page.

If Anti-Spam is not enabled, you can configure the settings on the Real-time Black List Settings page. All Anti-Spam and Junk Box pages, are unavailable, however.

NOTE: Anti-Spam > Real-Time Blacklist Filter does not apply to the SuperMassive 9800.

Topics:
- About RBL Lists
- Enabling the RBL Filter
Managing RBL Services
User-Defined SMTP Server Lists
Testing the Real-time Black List

About RBL Lists

SMTP Real-Time Black List (RBL) is a mechanism for publishing the IP addresses of SMTP servers from which or through which spammers operate. There are a number of organizations that compile this information both for free: http://www.spamhaus.org, and for profit: https://ers.trendmicro.com/.

NOTE: SMTP RBL is an aggressive, spam-filtering technique that can be prone to false-positives because it is based on lists compiled from reported spam activity. The SonicOS implementation of SMTP RBL filtering provides a number of fine-tuning mechanisms to help ensure filtering accuracy.

RBL list providers publish their lists using DNS. Blacklisted IP addresses appear in the database of the list provider’s DNS domain using inverted IP notation of the SMTP server in question as a prefix to the domain name. A response code from 127.0.0.2 to 127.0.0.11 indicates some type of undesirability.

For example, if an SMTP server with IP address 1.2.3.4 has been blacklisted by RBL list provider sbl-xbl.spamhaus.org, then a DNS query to 4.3.2.1.sbl-xbl.spamhaus.org provides a 127.0.0.4 response, indicating that the server is a known source of spam, and the connection is dropped.

NOTE: Most spam today is known to be sent from hijacked or zombie machines running a thin SMTP server implementation. Unlike legitimate SMTP servers, these zombie machines rarely attempt to retry failed delivery attempts. After the delivery attempt is blocked by RBL filter, no subsequent delivery attempts for that same piece of spam is made.

SonicOS Response to a Blacklist Query

The DNS responses are collected and cached. If any of the queries result in a blacklisted response, the server is filtered. Responses are cached using TTL values, and non-blacklisted responses are assigned a cache TTL of 2 hours. If the cache fills up, then cache entries are discarded in a FIFO (first-in-first-out) fashion.

The IP address check uses the cache to determine if a connection should be dropped. Initially, IP addresses are not in the cache, and a DNS request must be made. In this case, the IP address is assumed innocent until proven guilty, and the check results in the allowing of the connection. A DNS request is made and results are cached in a separate task. When subsequent packets from this IP address are checked, if the IP address is blacklisted, the connection is dropped.
Enabling the RBL Filter

When Real-time Black List blocking is enabled, inbound connections from hosts on the WAN, or outbound connections to hosts on the WAN, are checked against each enabled RBL service with a DNS request to the DNS servers configured under RBL DNS Servers.

To enable the Real-time Black List filter:

2. Select the Enable Real-time Black List Blocking checkbox.
3. Select the DNS Servers from the RBL DNS Servers drop-down menu:
 - Inherit Settings from WAN Zone (default) — The DNS server(s) IP address(es) are displayed, but dimmed in the DNS Server 1/2/3 fields.
 - Specify DNS Servers Manually — The DNS Server 1/2/3 fields become available.
 a) Enter one or more DNS server IP addresses in the DNS Server 1/2/3 fields.
4. Click Accept.

Managing RBL Services

You can add additional RBL services in the Real-time Black List Services section.

The Real-time Black List Services section displays information about and actions for the available RBL services:

- **RBL Service** – The name of the RBL service. Two are provided by SonicWall, but you can add others:
 - sbl-xbl.spamhaus.org – Spamhaus Project, which provides real-time anti-spam protection for Internet networks
 - dnsbl.sorbs.net – SORBS (Spam and Open Relay Blocking System), which provides access to its DNS-based Black List (DNSBL) database

- **Response Codes** – Mouse over the Comment icon to display a list of response codes. For information about response codes, see About RBL Lists.

- **Enable** – Select the checkbox to enable the RBL service. The checkboxes for the two provided services are selected by default.
To disable an RBL service, unselect its checkbox. This does not delete the entry from the table, so you can enable the service in the future.

- **Configure** – Displays icons for various actions:
 - **Edit** icon – Displays the *Edit RBL Domain* dialog. See *Editing an RBL Service*.
 - **Statistics** icon – Displays information about connections blocked:

 ![Connections Blocked](image)

 To clear these statistics, click the *Clear Statistics* button.

 - **Delete** icon – Deletes the RBL service entry. See *Deleting an RBL Service*.

Topics:

- Clearing Statistics
- Adding an RBL Service
- Editing an RBL Service

Clearing Statistics

You can clear statistics kept for the Black List services.

To clear statistics:

1. Select a service by clicking its checkbox. To clear the statistics of all services, select the checkbox in the header next to *RBL Service*. The *Clear Statistics* button becomes active.

 ![Real-time Black List Services](image)

2. Click the *Clear Statistics* button.

Adding an RBL Service

To add an RBL service:

2. Click the *Add* button. The *RBL Domain Settings* dialog displays.
3 Specify the domain name of the RBL service to be queried in the RBL Domain field.

4 Enable the service for use by selecting the Enable RBL Domain checkbox.

5 Specify the expected response codes by selecting their checkboxes. Most RBL services list the responses they provide on their Web site, although selecting Block All Responses is generally acceptable.

TIP: Selecting the Block All Responses checkbox selects the checkboxes for all the blocked responses. Deselecting the Block All Responses checkbox deselects the checkboxes of all the blocked responses.

6 Click OK. The RBL service is added to the Real-Time Black List Services table.

Editing an RBL Service

To edit an RBL Service:

2 Click the Edit icon associated with the RBL Service you want to change. The Add RBL Domain dialog displays.
3 Optionally, edit the domain name of the RBL service to be queried in the **RBL Domain** field.

 TIP: You can enable or disable an RBL service by selecting/deselecting its **Enable** checkbox in the **Real-time Black List Services** table.

4 Optionally, enable or disable the service for use by selecting/deselecting the **Enable RBL Domain** checkbox.

5 Optionally, select or deselect the expected response codes by selecting their checkboxes.

 TIP: Selecting the **Block All Responses** checkbox selects the checkboxes for all the blocked responses. Deselecting the **Block All Responses** checkbox deselects the checkboxes of all the blocked responses.

6 Click **OK**.

Deleting an RBL Service

To delete one RBL service:

1 Click the **Delete** icon for the service in the **Real-time Black List Services** table. A warning message displays:

 ![Warning Message]

2 Click **OK**. The entry is deleted from the **Real-Time Black List Services** table.

To delete one or more RBL services:

1 Select the checkbox of one or more services in the **Real-time Black List Services** table. The **Delete** button becomes active.

2 Click the **Delete** button. A warning message displays:

 ![Warning Message]

3 Click **OK**. The entry is deleted from the **Real-Time Black List Services** table.

User-Defined SMTP Server Lists

NOTE: You can modify, but not delete, the **RBL User White List** or the **RBL User Black List**.

The **User Defined SMTP Server Lists** section allows for Address Objects to be used to construct a white-list (explicit allow: **RBL User White List**) or black-list (explicit deny: **RBL User Black List**) of SMTP servers. Entries in these lists bypass the RBL querying procedure.
To ensure that you always receive SMTP connections from a partner site’s SMTP server:

 ![User-Defined SMTP Server Lists](image)

2. Create an Address Object for the server you want to add:
 a. Click the Add button. The Add Address Object dialog displays.
 b. Enter a friendly name for the server in the Name field.
 c. From the Zone Assignment drop-down menu, select the server’s zone.
 d. From the Type drop-down menu, select the type of host from the Type drop-down menu. The following setting(s) change, depending on the host type selected.
 e. If you selected:
 - **Host** (default) – Enter the IP address in the IP Address field.
 - **Range** – Enter the starting and ending IP addresses in the Starting IP Address and Ending IP Address fields.
 - **Network** – Enter the:
 - Network in the Network field.
 - Netmask in the Netmask field.
 - **MAC**:
 - Enter the MAC address in the MAC Address field.
 - If the host is a multi-homed hose, select the Multi-homed host checkbox. Otherwise, deselect the checkbox. This checkbox is selected by default.
• **FQDN** – Enter the FQDN hostname in the **FQDN Hostname** field.

 ![FQDN Hostname Field]

 f Click **OK**.

3 Click the **Edit** icon in the **Configure** column of the **RBL User White List**. The **Edit Address Object Group** dialog displays.

4 Select the address objects to be added from the left column. Multiple address objects can be selected at one time.

5 Click the **Right Arrow** button.

 To delete an address object from the group, select the address object and click the **Left Arrow** button.

6 Click **OK**. The table is updated, and that server is always allowed to make SMTP exchanges.

Testing the Real-time Black List

The **INVESTIGATE | Tools | System Diagnostics page** also provides a **Real-time Black List Lookup** feature in the **Diagnostic Tools** section that allows for SMTP IP addresses (or RBL services or DNS servers) to be specifically tested. For information about this feature, see **SonicWall SonicOS 6.5 Investigation**.

For a list of known spam sources to use in testing, refer to: http://www.spamhaus.org/sbl/latest/.
Specifying Relay Domains

NOTE: Anti-Spam > Relay Domains does not apply to the SuperMassive 9800.

The Anti-Spam > Relay Domains page allows you to list domains authorized for relaying email by CASS. Restricting domains that can relay emails avoids open-relay issues.

Topics:
- About Open Relay
- Listing Allowed Relay Domains

About Open Relay

An open relay is a SMTP server configured in such a way that it allows a third party to relay (send/receive email messages) that are neither from nor for local users. Such servers, therefore, are usually targets for spammers.

When CASS is configured as an open relay, the mail is relayed even if the mail is not destined to the recipient domain. When CASS is not configured as an open relay, it relays the emails that have one of the listed recipient domains; for domains not listed, the mails are rejected. Listing allowed relay domains avoid unnecessary relaying of emails even when mails are not destined to the user.
Listing Allowed Relay Domains

You can list all domains used for relay.

To list an authorized relay domain:

1. Navigate to the Settings section of Anti-Spam > Relay Domains.

2. Select whether to restrict relay domains:
 - Any source IP address is allowed to connect to this path – Allows any domain to relay messages. Go to Step 4.
 - CAUTION: Selecting this option may make a CASS open relay. Even if the mail is not destined to the recipient’s domain, the mail is relayed, which could result in spamming
 - Any source IP address is allowed to connect to this path, but relaying is allowed only for emails sent to one of these domains – Allows only listed domains to relay messages.

3. Enter the domain(s) allowed to relay messages in the field. Separate domains with a carriage return (\r).

4. Click Apply Changes.
Configuring Junk Box Settings

NOTE: Anti-Spam > Junkbox Settings does not apply to the SuperMassive 9800.

The Anti-Spam > Junkbox Settings page allows you to set the:

- Length of time that messages are stored in the Junk Box before being deleted.
- Number of Junk Box messages to be displayed per page.
- Action performed when a user unjunks a message.

To perform message management:

1. In the Message Management section, select the number of days to retain junk mails before deleting them from the Number of days to store in Junk Box before deleting drop-down menu. The minimum is 1 Day, the maximum is 180 Days, and the default is 15 Days.

2. Select the number of rows of messages to display in the Messages Found section on the Inbound view of the INVESTIGATE | Logs | Anti-Spam Junkbox page from the Number of Junk Box messages to display per page drop-down menu. The minimum is 10 Rows, the maximum is 400 Rows, and the default is 400 Rows.

3. Select whether an unjunked sender is added to the recipient’s Allowed List from When a user unjunks a message; neither option is selected by default:
 - Automatically add the sender to the recipient’s Allowed List
 - Do not add the sender to the recipient’s Allowed List

4. Click Apply Changes.

To revert to default settings:

1. Click the Reset to Defaults button.
Managing the Junk Summary

NOTE: Anti-Spam > Junk Box Summary does not apply to the SuperMassive 9800.

The Junk Store sends an email message to users listing all the messages placed in their Junk Summary. The Anti-Spam > Junk Box Summary page allows you to set up the Junk Summary for users.

To configure the types of messages that are logged, there is a link to the Anti-Spam > Advanced Settings page.
Managing the Junk Summary

To manage the junk summary:

1. In the Frequency Settings section of the Junkbox Summary Settings page, select how often summaries are sent to you from the Frequency of Summaries drop-down menu. Minimum frequency is 14 Days, maximum is 1 Hour, the default is 1 Day. To prevent summaries from being sent to you, select Never.

2. Select from the Time of day to send summary options to customize the time your users receive email notifications.
 - Any time of day (default)
 - Within an hour of – select a time of day from the drop-down menu; the default is 12 AM

3. If you selected 7 Days or 14 Days from the Frequency of summaries drop-down menu, the Day of week to send summary options become available. To customize the date your users receive email notifications select either:
 - Any day of the week (default)
 - Send summary on – select a day of the week from the drop-down menu; the default is Monday

4. Optionally, from the Time Zone drop-down menu, select the Greenwich Mean Time (GMT) to be used in determining the frequency.

5. In the Message Settings section, select what to include in the message summary from the Summaries include options:
 - All Junk Messages (default)
 - Likely Junk Only (hide definite junk)

6. Optionally, select a language for the emails from the Language of summary emails drop-down menu.

7. For Send plain summary (no graphics), select whether the summary does not contain graphics by clicking the Plain summary checkbox. By default, graphics are included in the summary.
To see an example for either version, click the appropriate link:

- view plain example
- view graphic example

Junk Box Summary for: biz@example.com
In the past 24 hours, your organization has received 8040 Junk emails and 1122 Good emails.

Junk Emails Blocked: 24
The emails listed below have been placed in your personal Junk Box since your last Junk Box Summary and will be deleted after 90 days. To receive any of these messages, click Unjunk. The message will be delivered to your inbox.

<table>
<thead>
<tr>
<th>Unjunk</th>
<th>View</th>
<th>From</th>
<th>Subject</th>
<th>Threat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>john@101solutions.com</td>
<td>Re: 150 Advertising</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>denezxzan@hotmail.com</td>
<td>YES, Earn a Doctors income wi...</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>support@eBay.com</td>
<td>Win Free Stuff</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spammer@usp.net</td>
<td>Take Some Vegas, its Cheap</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>warning@electroPC.com</td>
<td>!Alert. Read this. Click on button or DINE</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31831@maxor.1.us</td>
<td>139 th @your.4 sp1nts</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ej@speller.com</td>
<td>Learn to read words like a Pro</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bissy@3st-puru.com</td>
<td>Secret Strategies of Staying</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unemployed and fat</td>
<td></td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opportunity@eyesyoucan.com</td>
<td>Crop dusting jobs for Arab Americans</td>
<td>+5</td>
</tr>
</tbody>
</table>

Junk blocking by SonicWALL, Inc.

Junk Box Summary
In the Miscellaneous Settings section, choose how email junkbox summary notifications are viewed from the Enable “single click” view of messages options:

- Off
- View messages only (user can preview messages without having to type their username/passwords.) (default)

Close the window.
• Full access (clicking any link in a Junk Box Summary grants full access to the particular user’s settings)

9 To allow your users to authenticate to unjunk email messages, select the Enable Authentication to Unjunk checkbox. This option is not selected by default.

10 To limit junk box summaries notifications to users in LDAP, select the Only send Junk Box Summary emails to users in LDAP checkbox.

11 To enable authentication of non-LDAP users, click the To enable authentication of non ldap users Click here link. The Anti-Spam > Users page displays; for more information about managing users, see Managing the Junk Summary.

12 In the Other Settings section, choose how the summary is to be sent by selecting an option from Email address from which summary is sent:

• Send summary from recipient’s own email address (default)
• Send summary from this email address
 a) Enter an email address in the field

13 In the Name from which summary is sent field, enter the name to be displayed in the user’s email for the summary emails. The default name is Admin Junk Summary.

14 In the Email subject field, enter the subject line for the Junk Box Summary email. The default is Summary of junk emails blocked.

15 The URL for user view field is filled in automatically based on your server configuration. It is the basis for all the links in the Junk Box Summary email. If this setting is configured, each user Junk Box Summary emails listing that user’s received email threats are sent.

Junk Box Summary emails contain URLs to:

• View quarantined emails.
• Unjunk quarantined emails; users unjunk items in the Junk Box summary email by clicking links in the email.
• Log in to the Junk Box.

IMPORTANT: If you change this URL, to ensure connectivity, test the link if you make any changes by clicking the Test Connectivity button. If the test fails, ensure the URL is correct.

16 Click the Apply Changes button.

Reverting to Defaults

You can revert all custom settings to default settings at any time.

To revert to default settings:

1 Click the Revert button.
Configuring the Junk Box View

NOTE: Anti-Spam > Junk Box does not apply to the SuperMassive 9800.

On the **INVESTIGATE | Logs | Anti-Spam Junkbox** page, you can view, search, and manage all email messages that are currently in the Junk Store on the Exchange or SMTP server.

NOTE: This functionality is only available if the Junk Store is installed.

Topics:

- About the Junk Box Tabs
- Searching the Messages

![Junk Box Configuration](image)
About the Junk Box Tabs

The INVESTIGATE | Logs | Anti-Spam Junkbox page contains two tabs:

- **Inbound**, which lists only inbound messages
- **Outbound**, which lists only outbound messages

NOTE: If you cannot view the Outbound view, you must upgrade your Junk Store license. If you click on the Question Mark icon, this message is displayed:

![Outbound Email Notice]

The function and display of the two tabs are the same. Each view contains two sections:

- Simple/Advanced Search Mode
- Messages Found

You can collapse or expand either section by clicking its Expand/Collapse icon.

In the Simple Search Mode section are two links to other pages:

- To change the duration junk mail is held before deletion, click the link at the end of Items in the Junk Box will be deleted after at the top of the section.
- To display the Anti-Spam > Junkbox Settings page, click the Settings button at the bottom of the section.

Information Displayed in the Messages Found Table

The Messages Found table displays this information about the quarantined messages:

Information about quarantined messages

<table>
<thead>
<tr>
<th>This column</th>
<th>Contains or indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkbox icon</td>
<td>Checkbox for each item in the table. Clicking the Checkbox icon in the heading selects all items in the table.</td>
</tr>
<tr>
<td>To</td>
<td>Recipient’s email address.</td>
</tr>
<tr>
<td>Threat</td>
<td>Type of threat the email poses; for more information about threat categories, see Email Threat Category Settings: Options in Configuring Email Threat Categories.</td>
</tr>
<tr>
<td>Paperclip icon</td>
<td>Email has attachments.</td>
</tr>
<tr>
<td>Subject</td>
<td>Subject line of the email.</td>
</tr>
<tr>
<td>From</td>
<td>Sender’s email address.</td>
</tr>
<tr>
<td>Received</td>
<td>Date the email was sent.</td>
</tr>
</tbody>
</table>

Use the buttons at the top and bottom of the Messages Found table to perform the following Junk Store management tasks (see Message Table Buttons) on the INVESTIGATE | Logs | Anti-Spam Junkbox page:
Configuring the Junk Box View

You can perform two types of searches on messages found in the Junk Store:

- **Simple**; see **Performing a Simple Search**
- **Advanced**; see **Performing an Advanced Search**

Searching the Messages

Performing a Simple Search

To search the Junk Store:

1. On the INVESTIGATE | Logs | Anti-Spam Junkbox page, select either the **Inbound** view or the **Outbound** view.

2. Type the text for which to search into the **Search for** field.
 - Surround sentence fragments with quotation marks ("."). Boolean operators (AND, OR, NOT) can be used.

3. Select the desired email field in which to search from the in drop-down menu:
 - **Subject** (default)
 - **From**
 - **To**
 - **Unique Message ID**

4. From the on drop-down menu, select a date to search:
 - ---Show all--- (default)
 - **Today**
 - A particular date; the number of dates vary, depending on the length of time junk messages are held

Message Table Buttons

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Permanently delete the selected message(s) from the Junk Store; to delete all messages click the checkbox in the table heading.</td>
</tr>
<tr>
<td>Unjunk</td>
<td>Remove the selected message(s) from the Junk Store and deliver them to the user(s) to whom they are addressed. The delivery time and date are set by the Exchange server when each message is delivered to the user mailbox.</td>
</tr>
<tr>
<td>Send Copy To</td>
<td>Keep the selected message(s) in the Junk Store and send a copy of it (them) to a user.</td>
</tr>
</tbody>
</table>

SonicWall SonicOS 6.5 Security Configuration
Configuring the Junk Box View
5 Click the Search button to perform the search.

The results are displayed in the Messages Found section of the page, and a message is displayed at the top. If the search is successful, the message contains the word, Success!, and the entire message is highlighted in green. If a search is not successful, it contains the word, Warning!, and the entire message is highlighted in yellow.

6 To return the Messages Found table to its original state:
 a Delete the data from the Search for field.
 b Click Search.

Performing an Advanced Search

1 On the INVESTIGATE | Logs | Anti-Spam Junkbox page, select either the Inbound view or the Outbound view.

 ![Simple Search Mode](image1)

 NOTE: To change the settings, click the link in the Items in the Junk Box will be deleted after nn days to display the Anti-Spam > Junkbox Settings page.

2 Click the Advanced View button. The Simple Search Mode expands to become the Advanced Search Mode section.

 ![Advanced Search Mode](image2)
3 In the **Query Parameters** section, enter your search criteria in one or more of the **Query Parameter** fields:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Query criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>Recipient’s email address.</td>
</tr>
<tr>
<td>From</td>
<td>Sender’s email address. Separate multiple email addresses or domain names with a comma. Boolean operators OR and NOT are supported</td>
</tr>
<tr>
<td>Subject</td>
<td>Subject of the email. Enclose sentence fragments with quotation marks ("). Boolean operators AND, OR, and NOT are supported.</td>
</tr>
<tr>
<td>Unique Message ID</td>
<td>Unique message ID. Separate multiple entries with a comma.</td>
</tr>
<tr>
<td>Start Date</td>
<td>First date to search. Enter dates in either format:</td>
</tr>
<tr>
<td></td>
<td>• MM/DD/YYYY</td>
</tr>
<tr>
<td></td>
<td>• MM/DD/YYYY hh:mm (Hour values should be between 0 and 23 [24-hour clock])</td>
</tr>
<tr>
<td>End Date</td>
<td>Last date to search. Enter dates in either format:</td>
</tr>
<tr>
<td></td>
<td>• MM/DD/YYYY</td>
</tr>
<tr>
<td></td>
<td>• MM/DD/YYYY hh:mm (Hour values should be between 0 and 23 [24-hour clock])</td>
</tr>
</tbody>
</table>

4 In the **Threats** section, specify the threat categories to search for. By default all categories are selected.

Deselect any category you do not want to include in the search by clicking its checkbox. To deselect all categories, click the **Check None** button. All the categories become unchecked, the **Check All** button becomes active, and the **Check None** button becomes dimmed.

Only messages belonging to one of the Email Threat Categories set to **Store in Junk Box** on the **Anti-Spam > Settings** page are included in the Junk Store. All categories, however, are listed on this page, whether any messages of that type are stored in the Junk Store.

NOTE: To change these settings, click the **Settings** button; the **Anti-Spam > Junkbox Settings** page displays.

5 Click the **Search** button to perform the search.

The results are displayed in the **Messages Found** section of the page, and a message is displayed at the top. If the search is successful, the message contains the word, **Success!**, and the entire message is highlighted in green. If a search is not successful, it contains the word, **Warning!**, and the entire message is highlighted in yellow.

6 To return to the **Simple View**, click the **Simple View** button.

7 To return the **Messages Found** table to its original state:
 a Delete the data from the **Search for** field.
 b Click **Search**.
Managing Messages in the Junk Store

TIP: If you are not searching the Junk Store, click the Collapse icon for the Simple/Advanced Search Mode section.

You can delete, unjunk, or send a copy of Junk Store messages.

To manage the Junk Store:

1. On the INVESTIGATE | Logs | Anti-Spam Junkbox page, scroll to the Messages Found table.

2. Select the checkbox for the message(s) that you want to manage.

 TIP: To select all messages, select the checkbox in the table header. All checkboxes are selected.

3. Perform the management task(s):

 - To permanently delete the selected messages from the Junk Store, click the **Delete** button.

 NOTE: Messages are deleted automatically after 30 days.

 The selected messages are deleted immediately — there is no confirmation dialog before the deletion. If the deletion is successful, a green notification is displayed at the top of the page. If the deletion fails, the notification is red.

 ![Junk Box]

 A total of 2 messages were selected. 2 successfully deleted.

 - To remove the selected messages from the Junk Store for delivery to the recipients, click the **Unjunk** button.

 The selected messages are unjunked and sent immediately — there is no confirmation dialog before the action. If the action is successful, a green notification is displayed at the top of the page. If the action fails, the notification is red.
• To send a copy of the selected messages to a user, click the Send Copy To button. The Send Copy To dialog displays.

![Send Copy To dialog](image)

 Notice.
 Total junk emails identified: 10

 Send To
 - Send a copy to original recipient:
 - This will send a copy of the selected messages to the indicated recipient.
 - Recipient email address:
 - [Send]
 - [Cancel]

a) Do one of the following:

- Select the **Send a copy to original recipient** checkbox.
- Type the email address into the **Recipient email address** field.

b) Click the **Send** button.

The selected message is sent immediately — there is no confirmation dialog before the action. If the action is successful, a green notification is displayed at the top of the page. If the action fails, the notification is red.
Configuring User-Visible Settings

NOTE: Anti-Spam > User View Setup does not apply to the SuperMassive 9800.

The Anti-Spam > User View Setup page allows you to select and configure which settings are visible for users.

Topics:
- Configuring User View Setup
- Reverting to Default Settings

Configuring User View Setup

NOTE: Selected options appear in a user’s navigation toolbar.

To configure what the user sees:

1. In the **User View Setup** section, to allow users to see their own Address Book (people, companies, and lists) in the navigation toolbar, select the **Address Books** checkbox. This option is selected by default.
2 To allow Helpdesk to view users’ email problems, select the **Allow audit view to Helpdesk users** checkbox. This option is not selected by default.

3 In the **User download settings** section, to allow Outlook users to download the Junk Button, select the **Allow Users to download SonicWall Junk Button for Outlook** checkbox. This option is selected by default.

4 To allow Outlook and Outlook Express users to download the Anti-Spam Desktop, select the **Allow users to download SonicWall Anti-Spam Desktop for Outlook and Outlook Express** checkbox. This option is selected by default.

5 To allow Outlook users to download the Secure Mail plugin, select the **Allow users to download SonicWall Secure Mail Outlook plugin** checkbox. This option is selected by default.

6 In the **Quarantined junk mail preview settings** section, to allow users to preview their quarantined junk mail, select the **Users can preview their own quarantined junk mail** checkbox. This option is selected by default.

7 To allow Administrators to preview all quarantined junk mail for the entire organization, select the **Administrators** checkbox. This option is selected by default.

 NOTE: Administrators have access to preview all quarantined junk mail for the entire organization by default. To change this option, unselect the **Administrators** checkbox.

8 After all necessary changes have been made, click the **Apply Changes** button.

Reverting to Default Settings

You can change all settings back to factory defaults at any time.

To clear any changes made at any time and revert to the default settings:

1 Click the **Revert** button.
Configuring Corporate Allowed and Blocked Lists

NOTE: Anti-Spam > Address Books does not apply to the SuperMassive 9800.

The Anti-Spam > Address Books page allows you to configure the Allowed and Blocked lists for your organization. The lists are a combination of allowed and blocked senders from the organization’s lists and lists provided by the firewall.

NOTE: The Blocked view only filters addresses by people, IPs, and companies, while the Allowed view filters addresses by people, companies, IPs, and lists.

If your lists are long, you can use a search function to display only desired table entries.

Topics:
- About the Tabs
- Adding Items to the Allowed or Blocked List
- Deleting Items from the Allowed or Blocked List
- Importing Address Book Entries
- Exporting Address Book Entries
- Searching the Allowed and Blocked Lists
About the Tabs

The two tabs, **Allowed** and **Blocked**, are identical except the search categories for both pages are **People**, **Companies**, and **IPs** while the **Allowed** page also has **Lists**.

Topics:
- **Allowed Lists**
- **Blocked Lists**

Allowed Lists

The **Allowed** view enables you to permit people, companies, IP addresses, or lists to send mail to your organization. You can import address books to the Allowed list and export the Corporate Address Book to an Excel spreadsheet or text file.

Blocked Lists

NOTE: Senders added on the Corporate Blocked List by an Administrator are blocked automatically for all users and can only be deleted by an Administrator.

The **Blocked** view allows you to restrict people, companies, and IP addresses from sending mail to your organization. You can import address books to the Blocked list and export the Corporate Address Book to an Excel spreadsheet or text file.

Adding Items to the Allowed or Blocked List

To add an item to the Corporate Allowed/Blocked List:

1. Navigate to the appropriate view on **Anti-Spam > Address Books**.
2 Click the Add button. The Add Items Allowed List dialog displays.

3 Select the type of list user from the Select list type drop-down menu:
 - People
 - Companies
 - Lists (available only for the Allowed view)
 - IPs

4 Enter the address(es)/domain(s) in the field. Depending on the list type selected, the field name changes:
 - People – Enter IP Addresses separated by a carriage return
 - Companies – Enter the domains separated by a carriage return
 - Lists – Enter the mailing lists separated by a carriage return
 - IPs – Enter IP Addresses separated by a carriage return

5 Click Add to finish. The address(es)/domain(s) are added to the List on the Allowed/Blocked view.

Deleting Items from the Allowed or Blocked List

To delete a sender from the Corporate Allowed/Blocked List:

1 Click the appropriate view.

2 Select the checkbox next to the email address(es) you wish to delete. The Delete button becomes active.

3 Click the Delete button. A success message appears confirming the deletion.

 TIP: To delete all entries, click the checkbox in the table header.
Importing Address Book Entries

You can import entries from one or more address books.

To import address book entries:

1. Click the appropriate view.
2. Click the Import button. The Import AddressBook dialog displays.
3. Click the Browse button. The Windows File Upload dialog displays.
4. Select the file to upload. It must be in this format:

 `<TAB>D/L/E/I<TAB>A/B<TAB>Address List<CR>`

 where

 D/L/E/I – Domain/List/Email/IP Address
 A/B – Allowed/Blocked
 Address List – Address book entries separated by commas
 and email addresses, domains, IP addresses, and lists are separated with a carriage return.
 For example:

 `<TAB>E<TAB>A<TAB>email1@company.com,email2@company.com<CR>
 <TAB>L<TAB>B<TAB>list1@company.com,list2@company.com<CR>`

5. Click Open.
6. Click Import.

Exporting Address Book Entries

You can export entries to an Excel spreadsheet or text file.

To export address book entries:

1. On the appropriate view, click the Export button. The Windows Opening filename dialog displays.
2. Select either:
 - Open with Microsoft Excel (default)
 - Save file
3. Click OK.
Searching the Allowed and Blocked Lists

A search field is available to quickly find Allowed and Blocked entries in the **Allowed** and **Blocked** tables. You can access this field from either the **Allowed** view or the **Blocked** view.

To search the Allowed or Blocked lists:

1. Click the appropriate view.
2. Go to the **Search** section.
3. Enter an address or domain in the **Search** field. Enter multiple entries separated by a comma.
4. Optionally, you can filter the search between the **Type** of addresses (**People**, **Companies**, **IPs**, or **Lists** [Allowed list only]) by selecting the checkboxes below the search bar; by default, all are selected.
5. Click the **Go** button to begin the search. The results are shown in the **List** table.

To clear the search field:

1. Click the **Reset** button.
Managing Users

The Anti-Spam > Manage Users page allows you to add, remove, and manage all users, on both the Global and LDAP servers. For more information regarding LDAP configuration, refer to Managing Users.
The **User** table displays this information:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>User’s user name, which may not be part of the primary email address.</td>
</tr>
<tr>
<td>Primary Email</td>
<td>Email address of the user.</td>
</tr>
<tr>
<td>Message Management</td>
<td>Displays whether the user adheres to the settings on the Anti-Spam > Junk Box Summary page or has modified them:</td>
</tr>
<tr>
<td></td>
<td>• Default – All administrator’s settings are used</td>
</tr>
<tr>
<td></td>
<td>• Custom – User has changed one or more settings</td>
</tr>
<tr>
<td>User Rights</td>
<td>Is always User as user rights cannot be modified in CASS.</td>
</tr>
<tr>
<td>Source</td>
<td>Displays the user’s server name.</td>
</tr>
</tbody>
</table>

Topics:

- Updating the User Table
- Enabling Non-LDAP User Authentication
- Viewing Users
- Adding Users
- Signing In as a User

Updating the User Table

To update the list of users in the User Table:

1. Navigate to the Users section of Anti-Spam > Manage Users.
2. Click the Refresh Users & Groups button.

Enabling Non-LDAP User Authentication

Authentication for non-LDAP users must be enabled.

To enable authentication for non-LDAP users:

1. Scroll to the User View Setup section of Anti-Spam > Manage Users.
2 Select the Enable authentication for non ldap users checkbox. A cautionary message displays.

This will update Non ldap user settings. Do you want to continue?

3 Click OK.

Viewing Users

The User Table displays all the users who can log in. You can filter the users to only those you want to see at the moment by:

- Selecting user type: Selecting the Type of User to View
- Selecting a source (server); see Selecting a Server’s Users to View
- Specifying a particular user; see Finding a User

Selecting the Type of User to View

You can see all users, just LDAP users, or just non-LDAP users.

To select the type of user to display:

1 Scroll to the Find All users in column section of Anti-Spam > Manage Users.

2 Select which type of user:
 - Only LDAP – Select the Show LDAP entries checkbox; this is the default if your system has only LDAP users.
 - Only non-LDAP – Select the Show non-LDAP entries checkbox; this is the default if your system has only non-LDAP users.
 - Both LDAP and non-LDAP – Select both checkboxes; this is the default if your system has both types of users.

Selecting a Server’s Users to View

You can limit the User table to display only those users from a particular server.

To select a source (server):

1 Go to the filter section of User View Setup.
2 From the **Using Source** drop-down menu, select which server, or source, to view:
 - **GLOBAL** (default) – A Global server is always available
 - LDAP server name – If one or more LDAP servers have been added, all server names are listed.

3 Click the **Go** button.

Finding a User

You can restrict the view to just one user.

To find a user:

1 Go to the filter section of the **User View Setup** section of **Anti-Spam > Manage Users**.

2 From the **Find all users in column** drop-down menus and field, enter the selection criteria:
 a From the first drop-down menu, select:
 - User Name
 - Primary Email
 b Filter the search by these conditions from the second drop-down menu:
 - equal to (fast) (default)
 - starting with (medium)
 - containing (slow)
 c Enter the user’s information in the field.

3 Click **GO**. The **User** table displays only those emails that meet the specified criteria, and a message displays at the top of the page.

 Search Results
 Search for "gulf" resulted in 2 items found. To show the entire list again, empty the Search field and click the **Go** button.

To restore the User table display:

1 Remove the search criterion from the **Find all users in column** field.

2 Click **Go**.
Adding Users

You can add users to the list of users who can log in:

- Manually; see Adding Users Manually to the User Table
- By importing them; see Importing Users to the User Table

NOTE: It is recommended that you add all employees to the list of users who can log in. Corporate mailing list addresses and aliases (such as info@example.com) should also be added to ensure that junk mail sent to those aliases can be filtered. There is no harm if extra addresses that do not receive email appear here as a result of too broad an LDAP query.

Adding Users Manually to the User Table

To add a user to the Global or LDAP Server:

1. Click the Add button above the User Table. The Add User dialog displays.

 ![Add User Dialog](image)

2. Enter the primary address of the user in the Primary Address field.
3. If the user is an LDAP user, enter the user’s password in the Password and Confirm User fields.
4. Select which server the user belongs to from the Using Source drop-down menu.
5. Optionally, enter any Alias(es) of the user in the Aliases field. Separate each entry with a carriage return (<CR>).
6. Click Add to finish adding a user.
Importing Users to the User Table

To import a list of users from a file:

1. Click the Import button above the User Table. The Import Users dialog displays.

 - Select how the imported file is to be treated by selecting an **Import Mode**:
 - **append** – Adds the users to the end of the file containing the list of approved users.
 - **overwrite** – Replaces the existing users with the imported users.

2. Specify the server to be used as a source:
 - **GLOBAL**
 - LDAP server name

3. Click the Browse button. The Windows File Upload dialog displays.

4. Select the file to upload. It must be in this format, with a tab <TAB> delimiter between the primary address and the alias and a carriage return <CR> delimiter to separate entries:

   ```
   primary_email1@company.com<TAB>primary_email1@company.com<CR>
   ```

 For example:

   ```
   primary_email1@company.com<TAB>primary_email@company.com<CR>
   primary_email1@company.com<TAB>alias1@company.com<CR>
   primary_email1@company.com<TAB>alias2@company.com<CR>
   ```

 If the user already exists in LDAP, the entries would be:

   ```
   primary_email2@company.com<TAB>alias1@company.com<CR>
   primary_email2@company.com<TAB>alias2@company.com<CR>
   ```

5. Click Open.

6. Click Import.
Signing In as a User

You can sign in to a user’s account to see their Email Security INVESTIGATE | Logs | Anti-Spam Junkbox.

To sign in as a user:

1. Navigate to the User table of Anti-Spam > Users.
2. Select the checkbox of the user you want to sign in as. The Sign in as User button becomes active.
3. Click the Sign in as User button. A separate window displays the Email Security Anti-Spam > Junk Box page for that user.
4. To return to the SonicOS Anti-Spam > Manage Users page, click the Logout icon on the Email Security page.
Configuring the LDAP Server

The Anti-Spam > LDAP Configuration page allows you to configure various settings specific to LDAP servers.

Topics:
- Available LDAP Servers
- Adding an LDAP Server
- Configuring LDAP Queries
- Adding LDAP Mappings
- Configuring Global LDAP Settings
- Editing an LDAP Server Configuration
- Deleting an LDAP Server

NOTE: All panels can be displayed or hidden by clicking the Expand/Collapse icon.
Available LDAP Servers

This section displays information about any LDAP Servers configured on the firewall:

- **Friendly Name** – Displays the friendly name of the server. Clicking the link displays the Server Configuration, LDAP Query Panel, and Add LDAP Mappings sections.
- **Server Name:Port** – Displays the IP address and port of the server.
- **Type** – Displays the type of server, such as Active Directory or OpenLDAP.
- **Login Method**
- **Account Information** – Displays
- **Configure** – Contains Edit and Delete icons.
Adding an LDAP Server

Configure a new LDAP server to enable per-user access and management.

IMPORTANT: Anti-Spam uses your existing Active Directory or LDAP server to authenticate end users as they log in to their personal Junk Boxes. The Anti-Spam > LDAP Configuration page must be correctly filled out to return the complete list of users who are allowed to log in to their Junk Box. If a user does not appear in this list, their email is filtered, but they can not log in to their personal junk box. Correctly filling out the LDAP configuration requires completing the Server Configuration panel, LDAP Query Panel, and the Add LDAP Mappings panel.

To add an LDAP server:

1. In the Available LDAP Servers section, click the Add Server button. The Server Configuration section expands:
2 Optionally, in the Settings section, enable the Show Enhanced LDAP Mappings fields checkbox. When this option is enabled, fields for a secondary server display in red in the LDAP server configuration section.

3 To have the fields in the LDAP Query Panel completed automatically, ensure the Auto-fill LDAP Query fields when saving configuration checkbox is selected. This option is selected by default.

4 In the LDAP server configuration section, configure the new LDAP server’s settings:

 TIP: The primary and secondary names and IP addresses can be up to 200 alphanumeric characters including a hyphen (-) and period (.), but no spaces. Examples:

92.168.4.100
host-name123.com

- Friendly Name—Enter a friendly name for the LDAP server. The default name is ldapservern, where n is a sequential number.
- Primary Server name or IP address—The server name or IP address of the LDAP Server.
- Port Number—The port number of the LDAP Server. The default port number is 389.
- Secondary Server name or IP address—The server name or IP address of the secondary LDAP Server.
- Port Number—The port number of the secondary LDAP Server. The default port number is 389.
- LDAP Server Type—Select from the drop-down menu:
 - Active Directory
 - Lotus Domino
 - Exchange 5.5
 - Sun ONE iPlanet
 - Other
- LDAP Page Size—Enter the maximum page size to be queried on the LDAP Server. The default is 100.

CAUTION: Many LDAP servers, including Active Directory, have a setting that specifies the maximum page size to be queried. If the LDAP Page Size setting exceeds that maximum page size, performance problems may occur on both the LDAP server and on . In the rare circumstances that this needs to be adjusted, consult SonicWall Technical Support.

- Requires SSL—To have the LDAP Server require SSL, select this checkbox. This option is not selected by default.
- Allow LDAP Referrals—Select this option if you have multiple LDAP servers, each of which may have different information. When LDAP referral is enabled, one LDAP server can delegate parts of a login request for information to other LDAP servers that have more information. This delegation
is called a referral and occurs when an administrator or user logs in. A referred login request can be very slow, taking 20 seconds or more. This setting is not selected by default.

NOTE: To speed log ins for administrators and users, disable this option if you have:
- Only one LDAP server.
- Two or more LDAP servers that all share the same information.

TIP: It is safe to disable referrals and then test whether any users are blocked from logging in. No data or settings are lost.

5. From the Authentication Method section, configure the LDAP login method for users:

- **Anonymous bind** (default) – Many LDAP servers are configured to provide the list of users to anyone who asks. This is called **Anonymous Bind**.

 TIP: Select this option first, then test it; see Step 8.

- **Login** – If the **Anonymous bind** option failed, select this option. You then need to provide a username and password to get LDAP to return the list of users.

6. If you selected:

- **Anonymous bind**, go to Step 8.
- **Login**, go to Step 7.

7. Specify the Login name and Password.

Login name is the credential used to allow a user access to the LDAP resource. Each type of LDAP server has a format for a log in name. Use the format appropriate for your server.

TIP: To see examples of the different formats, click the Question Mark icon by the Login name field.

8. To test the settings you just configured, click the Test LDAP Login button. The Test Results message displays:

 ![Primary LDAP Server](Image)

 Successfully logged in to LDAP server.

 (ldapserver2 — 16.5.56:135:389)

 ![Primary LDAP Server](Image)

 Cannot communicate with LDAP server. Host name, port number, or login credentials may be incorrect.

 (ldapserver2 — 18.5.56:31:981)

9. Click **Save Changes** to finish adding an LDAP Server. The LDAP Query Panel and Add LDAP Mappings panel display.
Configuring LDAP Queries

TIP: If you selected the **Auto-fill LDAP Query when saving configuration** option in the **Settings** section, the **LDAP Query Panel** fills with default values automatically.

To successfully allow users to login to their Junk Box:

1. In the **LDAP Query Panel**, go to the **Query Information for LDAP Users** section.

 TIP: If you did not specify **Auto-fill LDAP Query fields when saving configuration** in the **Settings** section, you can click the **Auto-fill User Fields** button to do so.

2. To use the optional Groups functionality, in the **Directory Node to Begin Search** field, specify a full LDAP directory path that points towards a node (directory inside LDAP) containing the information for all groups in the directory. This path narrows the search for LDAP groups to a reasonable size.

 The information contained in LDAP is organized into a directory tree much like an ordinary file system. Each directory is specified as a **name=value** pair, where:

 - **name** is commonly:
• **value** is commonly one segment of a fully specified hostname (for example, the word `companyxyz` in `sales.companyxyz.com`).

To specify a particular node in LDAP you use a comma-separated list. To specify multiple nodes to search in, use the ampersand (&) character between full paths.

For example, if the hostname of a particular machine inside `companyxyz` was `computer27.sales.companyxyz.com`, the LDAP path might be:

```
DC=computer27,DC=sales,DC=companyxyz,DC=com
```

Tip: To see examples for the various directory types, click the **Question Mark** icon next to the **Directory Node to Begin Search** field.

3. Enter an LDAP filter in the standard LDAP filter syntax in the **Filter** field.

 Anti-Spam must be instructed on how to find and identify users and mailing lists. By specifically stating the Object Class and mail attribute in the **Filter** field, non-primary email accounts (such as printers and computers) are not included during an LDAP query. Focusing on primary user accounts speeds up the query.

 The **Filter** field contains an example syntax:

   ```
   (&(|(objectClass=group)(objectClass=person)(objectClass=publicFolder))(mail=*))
   ```

 All LDAP filters are grouped in parenthesis, and the filter itself has a pair of parentheses surrounding the whole string. The very next character from the left is an ampersand (&). The LDAP filter syntax is prefix notation, which means this filter only returns the logical AND of three sub-filters, each grouped in parentheses. Other operators include a pipe (|) for OR and an exclamation point (!) for NOT.

 Tip: To see examples for the various directory types, click the **Question Mark** icon next to the **Filter** field.

4. Specify the text attribute a user uses for a login name in the **User Login Name Attribute** field. The generally accepted attribute for this field is `sAMAccountName`, which is the default. This attribute should work for Microsoft Windows, as well as all other environments.

 Important: This field works in conjunction and needs to agree with the **Filter** field. If you change `sAMAccountName`, you must change it in both the **Filter** field and the **User Login Name Attribute** field.

 Tip: To see examples for the various directory types, click the **Question Mark** icon next to the **User Login Name Attribute** field.

5. Specify the email address, employee ID, phone number, or other alias attributes that link a single user to his or her junk box in the **Email Alias Attribute** field.

 At many companies, an end user has multiple email accounts that all map to one true email account. For example, `JohnS@example.com` and `John.Smith@example.com` might both be valid email addresses for John Smith’s InBox. Anti-Spam supports this by allowing an end user to have one junk email box that groups all email from their various email addresses.

 The generally accepted single attribute for this field is `proxyAddresses`. All other attributes must be separated by a comma. For example:
• proxyAddresses,legacyExchangeDN
• proxyAddresses,EmployeeID,PhoneNumber

TIP: In Microsoft Windows environments, the single attribute, proxyAddresses, is often sufficient. To see examples for the various directory types, click the Question Mark icon next to the Email Alias Attribute field.

6 Optionally, test to see if your settings work, click Test User Query button under the Query Information for LDAP Users section.

7 Save the changes by clicking Save Changes under the Query Information for LDAP Users section.

8 Go to the Query Information for LDAP Groups section.

TIP: If you did not specify Auto-fill LDAP Query fields when saving configuration in the Settings section, you can click the Auto-fill Group Fields button to do so.

9 To use the optional Groups functionality, in the Directory Node to Begin Search field, specify a full LDAP directory path that points towards a node (directory inside LDAP) containing the information for all groups in the directory. This narrows the search for LDAP groups to a reasonable size. For further information about this setting, see Step 2.

10 To instruct Anti-Spam on how to find and identify users and mailing lists, enter an LDAP filter in the standard LDAP filter syntax in the Filter field. The field contains an example syntax. For further information about this setting, see Step 3.

11 Specify the attribute of the group that corresponds to Group names in the Group name attribute field.

12 A common way to specify a group is a mailing list. In the mailing list entry in LDAP, there is one particular field that specifies the members of the list. Enter that information in the Group members attribute field.

13 In some LDAP configurations, there is an attribute, inside each user’s entry in LDAP, that lists the groups or mailing lists of which this user is a member. Specify that attribute in the User membership attribute field.

14 Optionally, test to see if your settings work, click the Test User Query button under the Query Information for LDAP Groups section.

15 Save the changes by clicking Save Changes under the Query Information for LDAP Groups section.

Adding LDAP Mappings

If you are using a Microsoft Windows environment, you need to specify the NetBIOS domain name in the Add LDAP Mappings panel.

NOTE: The NetBIOS domain name is sometimes called the pre-Windows 2000 domain name.

To add LDAP mapping:

1 Determine your domain name(s).
 a Login to your domain controller.
 b Navigate to Start > All Programs > Administrative Tools > Active Directory Domains and Trusts.
 c Highlight your domain from the Active Directory Domains and Trusts dialog.
 d Click Action.
e Click **Properties**. The domain name(s) appear on the domain’s **Properties** dialog on the **General** view.
f Record the domain name(s).

2 Navigate to the **Add LDAP Mappings** panel of **Anti-Spam > LDAP Configuration**.

![Add LDAP Mappings](https://example.com)

3 Add the NetBIOS domain name(s) to the **Domains** field. Add a maximum of 200 alphanumeric characters. Separate multiple domains with a comma. Hyphens (-) and periods (.) are allowed.

4 Click **Save Changes**.

5 On certain LDAP servers, such as Lotus Domino, some valid email addresses do not appear in the LDAP. The **Conversion Rules** section changes the way the SonicWall Email Security appliance interprets certain email addresses to provide a way to map the email address to the LDAP Server.

If you:
- Have one of these servers, go to **Step 6**.
- Do not have one of these servers, you have finished configuring LDAP.

6 To map these addresses, click on the **View Rules** button. The **LDAP Mapping** dialog displays.

![LDAP Mapping](https://example.com)

7 Select the LDAP Server you are using from the drop-down menu.

8 Click **Go**.

9 Optionally, add a mapping:
 a From the **IF/THEN** drop-down menus and fields, select:
 - **domain is**—Adds additional mappings from one domain to another; in the field, specify a domain to be mapped
 - **replace with**—Replaces the domain with the one specified
Example: IF domain is engr.corp.com THEN replace with corp.com, then email addressed to anybody@engr.corp.com is sent to anybody@corp.com

• also add—Adds the second domain to the list of valid domains

Example: IF domain is corp.com THEN also add engr.corp.com, then if corp.com is found in the list of valid LDAP domains, engr.corp.com is added to the list

• left side character is—Adds character substitution mappings; in the field, specify a character to be substituted

• replace with—Replaces any character specified to the left of the at sign (@) in the email address with the new character

Example: IF left side character is _ THEN replace with –, then email addressed to Jane_Doe@corp.com is sent to Jane-Doe@corp.com

• also add—Adds a second email address to the list of valid email addresses

Example: If left side character is _ THEN also add –, then email addressed to either Jane_Doe@corp.com or Jane-Doe@corp.com is a valid email address

b Click the Add Mapping button to finish adding the conversion rules.

NOTE: To delete a mapping, click the Delete button for that mapping.

Configuring Global LDAP Settings

Global LDAP settings apply universally across all LDAP server configurations.

To configure global settings:

1 Navigate to the Global Configurations panel in Anti-Spam > LDAP Configuration.
2 In the **Domain Aliases** section, enter one or more aliases for one or more servers for a maximum of 200 alphanumeric characters for each server. Separate multiple aliases with a comma. Hyphens (-), underscores (_), but not spaces, are allowed.

End users must authenticate using an alias configured here. For Active Directory servers, the pseudo-domains are the LDAP friendly names paired with the NetBIOS domain name. Any aliases are available for authentication in the drop-down menu on the logon screen if that option is selected in the **Settings** section.

3 To allow the end user to see a list of domains and aliases when logging on, in the **Settings** section, select **Show a list of domains to end users for authentication**. This setting is selected by default.

4 Specify the number of minutes between refreshes of the list of users on the system in the **Usermap Frequency** field.

This setting applies to the list of aliases and lists of members of groups. In most cases, increase this setting only to lower the load on the LDAP server. Depending on your other settings, fetching the user list once every 24 hours (1440 minutes) is acceptable and results in less load on the LDAP server.

> **NOTE:** Usermap frequency does not affect a user’s ability to log on, which is a real-time reflection of the LDAP directory

5 Click **Save Changes**.

Editing an LDAP Server Configuration

Editing an LDAP server configuration requires the same settings as adding a server.

To configure an LDAP server:

1 From the list of available LDAP servers, click the **Edit** icon. These sections expand for editing:

 - **Server Configuration** – see Adding an LDAP Server
 - **LDAP Query Panel** – see Configuring LDAP Queries
 - **Add LDAP Mappings** – see Adding LDAP Mappings

Deleting an LDAP Server

To delete an LDAP server:

1 Click the Delete icon for the server to be deleted. A warning message appears:

 [Warning message]

2 Click **OK**. A success message appears at the top of the **Anti-Spam > LDAP Configuration** page.
NOTE: Anti-Spam > Downloads does not apply to the SuperMassive 9800.

The Anti-Spam > Download Anti-Spam Tools page allows you to download and install one of SonicWall’s latest spam-blocking buttons on your desktop.

By clicking on a link, you can download these buttons to your desktop:

- Junk and Unjunk buttons to teach Email Security what you want and don’t want easily and quickly; select one:
 - Anti-Spam Desktop for Outlook (32-bit) and Outlook Express (trial version) on Windows (32-bit)
 - Anti-Spam Desktop for Outlook (32-bit) and Outlook Express (trial version) on Windows (64-bit)
 - Anti-Spam Desktop for Outlook (64-bit) and Outlook Express (trial version) on Windows (64-bit)

- Junk button to teach Email Security what you want easily and quickly; select one:
 - Junk Button for Outlook (32-bit)
 - Junk Button for Outlook (64-bit)
DPI-SSL

- About DPI-SSL
- Configuring Client DPI-SSL Settings
- Configuring Server DPI-SSL Settings
About DPI-SSL

Functionality

Topics:
- Supported Features
- Security Services

Supported Features

Deep Packet Inspection of Secure Socket Layer (DPI-SSL) extends SonicWall’s Deep Packet Inspection technology to the inspection of encrypted HTTPS traffic and other SSL-based traffic. The SSL traffic is decrypted (intercepted) transparently, scanned for threats, and then re-encrypted and, if no threats or vulnerabilities are found, sent along to its destination.

DPI-SSL provides additional security, application control, and data-leakage prevention for analyzing encrypted HTTPS and other SSL-based traffic. DPI-SSL supports:

- Transport Layer Security (TLS) Handshake Protocol 1.2 and earlier versions – Starting with SonicOS 6.2.5.1, the TLS 1.2 communication protocol is supported during SSL inspection/decryption between the firewall and the server in DPI-SSL deployments (previously, TLS 1.2 was only supported between client and firewall). SonicOS also supports TLS 1.2 in other areas as well.
- SHA-256 – Starting with SonicOS 6.2.5.1, all re-signed server certificates are signed with the SHA-256 hash algorithm.
- Perfect Forward Secrecy (PFS) – Perfect Forward Secrecy-based ciphers and other stronger ciphers are prioritized over weak ciphers in the advertised cipher suite. As a result, the client or server is not expected to negotiate a weak cipher unless the client or server does not support a strong cipher.

DPI-SSL also supports application-level Bandwidth Management over SSL tunnels. App Rules HTTP bandwidth management policies also applies to content that is accessed over HTTPS when DPI-SSL is enabled for App Rules. Starting with SonicOS 6.5.2, DPI-SSL for both client and server can be controlled by Access Rules.

NOTE: DPI-SSL is a separate, licensed feature that provides inspection of encrypted HTTPS traffic and other SSL-based IPv4 and IPv6 traffic.
Topics:

- Support for Local CRL on page 291
- TLS Certificate Status Request Extension on page 291
- Blocking of SSH X11 Forwarding on page 291
- Support for ECDSA-Related Ciphers on page 292
- DPI-SSL and CFS HTTPS Content Filtering Work Independently on page 292
- Original Port Numbers Retained in Decrypted Packets on page 292

Support for Local CRL

A Certificate Revocation List (CRL) is a list of digital certificates that have been revoked by the issuing Certificate Authority (CA) before their scheduled expiration date and should no longer be trusted. A problem with contacting the CA for this list is that the browser cannot confirm whether it has reached the CA’s servers or if an attacker has intercepted the connection to bypass the revocation check.

Local CRL is relative to typical CRL (or online CRL). For typical CRL, the client needs to download the CLR from a CRL distribution point. If the client is unable to download the CRL, then by default, the client trusts the certificate. Contrary to typical CRL, Local CRL maintains a list of revoked certificates locally in import memory for DPI-SSL to verify whether the certificate has been revoked.

For further information about this feature, contact Technical Support.

TLS Certificate Status Request Extension

DPI-SSL now supports the new TLS Certificate Status Request extension (formally known as OCSP stapling). By supporting this extension, the certificate status information is delivered to the DPI-SSL client through an already established channel, thereby reducing overhead and improving performance.

For further information about this feature, see SonicWall SonicOS 6.5 System Setup or contact Technical Support.

Blocking of SSH X11 Forwarding

NOTE: X11 Forwarding requires a valid SonicWall DPI-SSH license.

X is a popular window system for Unix workstations. Using X, a user can run remote X applications that open their windows on the user’s local display (and vice versa, running local applications on remote displays). If the remote server is outside after a firewall and administrator have blocked remote connections, user can still use SSH tunneling to get the X display on a local machine. A user can thus circumvent the application-based security policies on the firewall, thereby creating security risks. As X protocol sessions between applications and X servers are not encrypted while being transmitted over a network, an X11 protocol connection can be routed through an SSH connection to provide security and stronger authentication. This feature is called X11 forwarding. An SSH client requests X forwarding when it connects to an SSH server (assuming X forwarding is enabled in the client). If the server allows X forwarding for this connection, login proceeds normally, but the server takes some special steps behind the scenes. In addition to handling the terminal session, the server sets itself up as a proxy X server running on the remote machine and sets the DISPLAY environment variable in the remote shell to point to the proxy X display. If an X client program is run, it connects to the proxy. The proxy behaves just like a real X server, and in turn instructs the SSH client to behave as a proxy X client, connecting to the X server on the local machine. The SSH client and server then cooperate to pass X protocol information back and forth over the SSH pipe between the two X sessions, and the X client program appears on your screen just as if it had connected directly to your display. DPI-SSH X11 forwarding supports these clients:

- SSH client for Cygwin
• Putty • secureCRT
• SSH on Ubuntu
• SSH on centos

DPI-SSH X11 Forwarding supports the SSH servers on:
• Fedora
• Ubuntu

SSH X11 Forwarding supports both route mode and wire mode. For:
• Wire mode, SSH X11 Forwarding is only supported in the secure (active DPI of inline traffic) mode.
• Route mode, here is no limitation.

The maximum number of connections supported for SSH X11 Forwarding is same as for DPI-SSH: 1000.DPI-SSH.

Support for ECDSA-Related Ciphers
Starting with SonicOS 6.5.2, DPI-SSL Client supports ECDSA (Elliptic Curve Digital Signature Algorithm) ciphers:
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256

DPI-SSL and CFS HTTPS Content Filtering Work Independently
Starting with SonicOS 6.5.2, DPI-SSL and CFS HTTPS content filtering can be enabled at the same time and function as follows:
• If DPI-SSL Client Inspection is disabled, Content Filter Service filters HTTPS connections.
• If DPI-SSL Client Inspection is enabled, but the Content Filter option is not selected, Content Filter Service filters HTTPS connections.
• If DPI-SSL Client Inspection is enabled and the Content Filter option is selected, CFS does not filter HTTPS connections.

Original Port Numbers Retained in Decrypted Packets
For encrypted connections DPI-SSL/DPI-SSH connections, the decrypted packet shows the destination port as 80 (in the case of HTTPS). When the decrypted packets are observed in packet capture/Wireshark, they now retain the original port numbers. The port number change applies only to the packet capture and not to the actual packet or connection cache.

Security Services
The following security services and features can use DPI-SSL:
• Gateway Anti-Virus
• Gateway Anti-Spyware
• Intrusion Prevention
• Content Filtering
• Application Firewall
Deployment Scenarios

DPI-SSL has two main deployment scenarios:

- **Client DPI-SSL**: Used to inspect HTTPS traffic when clients on the appliance’s LAN access content located on the WAN. Exclusions to DPI-SSL can be made on a common-name or category basis.
- **Server DPI-SSL**: Used to inspect HTTPS traffic when remote clients connect over the WAN to access content located on the appliance’s LAN.

Proxy Deployment

DPI-SSL supports proxy deployment, where all client browsers are configured to redirect to a proxy server, but an appliance sits between the client browsers and the proxy server. All DPI-SSL features are supported in this scenario, including supporting domain exclusions when the domain is part of a virtual hosting server, or in some cloud deployments, wherein the same server IP can be used by multiple domains.

Additionally, typical data center server farms are fronted with a load balancer and/or reverse SSL Proxy to offload SSL processing on the servers. For a load balancer fronting the servers and doing decryption, the appliance usually only sees the IP of the load balancer, and the load balancer decrypts the content and determines the specific server to assign this connection to. DPI-SSL now has a global policy option to disable an IP-based exclusion cache. The exclusions continue to work even if the IP-based exclusion cache is off.

Customizing DPI-SSL

IMPORTANT: Add the NetExtender SSL VPN gateway to the DPI SSL IP-address exclusion list. As NetExtender traffic is PPP-encapsulated, having SSL VPN decrypt such traffic does not produce meaningful results.

In general, the policy of DPI-SSL is to secure any and all traffic that flows through the appliance. This may or may not meet your security needs, so DPI-SSL allows you to customize what is processed.

DPI-SSL comes with a list (database) of built-in (default) domains excluded from DPI processing. You can add to this list at any time, remove any entries you’ve added, and/or toggle built-in entries between exclusion from and inclusion in DPI processing. DPI-SSL also allows you to exclude or include domains by common name or category (for example, banking or health care).

Excluded sites, whether by common name or category, however, can become a security risk that can be exploited in the future by exploit kits that circumvent the appliance and are downloaded to client machines or by a man-in-the-middle hijacker presenting a fake server site/certificate to an unsuspecting client. To prevent such risks, DPI-SSL allows excluded sites to be authenticated before exclusion.

As the percentage of HTTPS connections increase in your network and new https sites appear, it is improbable for even the latest SonicOS version to contain a complete list of built-in/default exclusions. Some HTTPS connections fail when DPI-SSL interception occurs due to the inherent implementation of a new client app or the server implementation, and these sites may need to be excluded on the appliance to provide a seamless user experience. SonicOS keeps a log of these failed connections that you can troubleshoot and use to add any trusted entries to the exclusion list.

In addition to excluding/including sites, DPI-SSL provides both global authentication policy and a granular exception policy to the global one. For example, with a global policy to authenticate connection, some connections may be blocked that are in essence safe, such as new trusted CA certificates or a self-signed server certificate of a private (or local-to-enterprise deployment) secure cloud solution. The granular option allows you to exclude individual domains from the global authentication policy.
You can configure exclusions for a domain that is part of a list of domains supported by the same server (certificate). That is, some server certificates contain multiple domain names, but you want to exclude just one of these domains without having to exclude all of the domains served by a single server certificate. For example, you can exclude youtube.com without having to exclude any other domain, such as google.com, even though *.google.com is the common name of the server certificate that has youtube.com listed as an alternate domain under Subject Alternate-Name extension.

Connections per Appliance Model

Maximum concurrent connections per platform supported by Client DPI-SSL shows each platform and the maximum number of concurrent connections on which the appliance can perform Client DPI-SSL inspection.

Maximum concurrent connections per platform supported by Client DPI-SSL

<table>
<thead>
<tr>
<th>Hardware Model</th>
<th>Max Concurrent DPI-SSL Connections</th>
<th>Hardware Model</th>
<th>Max Concurrent DPI-SSL Connections</th>
<th>Hardware Model</th>
<th>Max Concurrent DPI-SSL Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSa 9650</td>
<td>300,000</td>
<td>SM 9600</td>
<td>12,000</td>
<td>TZ600</td>
<td>750</td>
</tr>
<tr>
<td>NSa 9450</td>
<td>200,000</td>
<td>SM 9400</td>
<td>10,000</td>
<td>TZ500</td>
<td>750</td>
</tr>
<tr>
<td>NSa 9250</td>
<td>100,000</td>
<td>SM 9200</td>
<td>8,000</td>
<td>TZ500W</td>
<td>750</td>
</tr>
<tr>
<td>NSa 6650</td>
<td>100,000</td>
<td></td>
<td></td>
<td>TZ400</td>
<td>500</td>
</tr>
<tr>
<td>NSa 5650</td>
<td>37,000</td>
<td>NSA 6600</td>
<td>6,000</td>
<td>TZ400W</td>
<td>500</td>
</tr>
<tr>
<td>NSa 4650</td>
<td>30,000</td>
<td>NSA 5600</td>
<td>4,000</td>
<td>TZ300</td>
<td>500</td>
</tr>
<tr>
<td>NSa 3650</td>
<td>24,000</td>
<td>NSA 4600</td>
<td>3,000</td>
<td>TZ300W</td>
<td>500</td>
</tr>
<tr>
<td>NSa 2650</td>
<td>18,000</td>
<td>NSA 3600</td>
<td>2,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NSA 2600</td>
<td></td>
<td></td>
<td>NSA 2600</td>
<td>1,000</td>
</tr>
</tbody>
</table>

NOTE: For SuperMassive 9200, 9400, and 9600 and NSA Series firewalls with more than 250,000 DPI settings and dynamic connection sizing configured, the firewall can increase the DPI-SSL connection count dynamically. For more information, see Dynamic Connection Sizing.
Configuring Client DPI-SSL Settings

DPI-SSL Status
Current DPI-SSL connections (cur/peak/max): 0/0/500

Topics:
- Viewing DPI-SSL Status
- Configuring Client DPI-SSL

Viewing DPI-SSL Status

The DPI-SSL Status section displays the current DPI-SSL connections, peak connections, and maximum connections.
Configuring Client DPI-SSL

The Client DPI-SSL deployment scenario typically is used to inspect HTTPS traffic when clients on the LAN browse content located on the WAN. In this scenario, the firewall typically does not own the certificates and private keys for the content it is inspecting. After performing DPI-SSL inspection, the appliance re-writes the certificate sent by the remote server and signs this newly generated certificate with the certificate specified in the Client DPI-SSL configuration. By default, this is the firewall certificate authority (CA) certificate, but a different certificate can be specified. Users should be instructed to add the certificate to their browser’s trusted list to avoid certificate trust errors.

Topics:
- Configuring General Settings
- Selecting the Re-Signing Certificate Authority
- Configuring Exclusions and Inclusions
- Client DPI-SSL Examples

Configuring General Settings

To enable Client DPI-SSL inspection:

2. Select the Enable SSL Client Inspection checkbox. This option is not selected by default.

3. Click APPLY.
3. Select one or more of the following services with which to perform inspection; none are selected by default:
 - Intrusion Prevention
 - Gateway Anti-Virus
 - Gateway Anti-Spyware
 - Application Firewall
 - Content Filter

4. To authenticate servers for decrypted/intercepted connections, select the **Always authenticate server for decrypted connections** checkbox. When enabled, DPI-SSL blocks connections:
 - To sites with untrusted certificates.
 - If the domain name in the Client Hello cannot be validated against the Server Certificate for the connection.

 This option is not selected by default.

5. To disable use of the server IP address-based dynamic cache for exclusion, select the **Deployments wherein the Firewall sees a single server IP for different server domains, ex: Proxy setup** checkbox. This option is not selected by default.

 This option is useful for proxy deployments, where all client browsers redirect to a proxy server, including if appliance is between the client browsers and the proxy server. All DPI-SSL features are supported, including domain exclusions when the domain is part of a virtual hosting server, as part of a server farm fronted with a load balancer, or in some cloud deployments, wherein the same server IP can be used by multiple domains.

 In such deployments, all server IPs as seen by the appliance are the proxy server’s IP. It is, therefore, imperative that in proxy deployments, IP-based exclusion cache is disabled. Enabling this option does not affect SonicOS’s capability to perform exclusions.

6. By default, new connections over the DPI-SSL connection limit are bypassed. To allow new connections to bypass decryption instead of being dropped when the connection limit is exceeded, select the **Allow SSL without decryption (bypass) when connection limit exceeded** checkbox. This option is selected by default.

 To ensure new connections over the DPI-SSL connection limit are dropped, deselect/disable this checkbox.

7. To audit new, built-in exclusion domain names before they are added for exclusion, select the **Audit new built-in exclusion domain names prior to being added for exclusion** checkbox. By default, this checkbox is not enabled.

 When this option is enabled, whenever changes to the built-in exclusion list occur, for example, an upgrade to a new firmware image or other system-related actions, a notification pop-up dialog displays over the **Decryption Services > DPI-SSL/TLS Client** page with the changes. You can inspect/audit the new changes and accept or reject any, some, or all of the new changes to the built-in exclusion list. At this point, the run-time exclusion list is updated to reflect the new changes.

 If this option is disabled, SonicOS accepts all new changes to the built-in exclusion list and adds them automatically.
8 To always authenticate a server before applying a common-name or category exclusion policy, select the **Always authenticate server before applying exclusion policy** checkbox. When enabled, DPI-SSL blocks excluded connections:

- To sites with untrusted certificates.
- If the domain name in the Client Hello cannot be validated against the Server Certificate for the connection.

This is a useful feature to authenticate the server connection before applying exclusion policies. Enabling this option ensures that the appliance does not blindly apply exclusion on connections and thereby create a security hole for exclusion sites or sites belonging to excluded categories. This is especially relevant when banking sites, as a category, are excluded.

By validating both the server certificate and the domain name in the Client Hello before applying an exclusion policy, SonicOS can reject untrusted sites and potentially block a type of zero-day attack from taking place. The SonicOS implementation takes the “trust-but-verify” approach to ensure that a domain name that matches the exclusion policy criteria is validated first, thus preventing an unsuspecting client from phishing or URL-redirect-related attacks.

By default, this checkbox is not enabled.

9 Click **ACCEPT**.

To enable DPI-SSL Client on a zone:

10 Navigate to **MANAGE | System Setup > Network > Zones**.

11 Click the **Edit** icon for the zone to be configured. The **Edit Zone** dialog displays.

12 Select **Enable SSL Client Inspection**. This option is not selected by default.

13 Finish configuring the zone.

14 Click **OK**.

15 Repeat Step 11 through Step 14 for each zone on which to enable DPI-SSL client inspection

To enable DPI-SSL Server on a zone:

1 Navigate to **MANAGE | Security Configuration > Decryption Services > DPI-SSL/TLS**.

2 Select **Enable SSL Server Inspection**. This option is not selected by default.

3 Select one or more types of inspection.

4 Click **ACCEPT**.

5 Navigate to **MANAGE | System Setup > Network > Zones**.

6 **IMPORTANT:** If you are excluding alternate domains in the Subject-Alternate-Name extension, it is recommended that you enable this option.

7 **TIP:** If you enable this option, use the **Skip CFS Category-based Exclusion** option (see [Excluding/Including Common Names](#)) to exclude a particular domain or domains from this global authenticate option. This is useful to override any server authentication-related failures of trusted sites.

8 **IMPORTANT:** If you are excluding alternate domains in the Subject-Alternate-Name extension, it is recommended that you enable this option.

9 **TIP:** If you enable this option, use the Skip CFS Category-based Exclusion option (see [Excluding/Including Common Names](#)) to exclude a particular domain or domains from this global authenticate option. This is useful to override any server authentication-related failures of trusted sites.

8 **IMPORTANT:** If you are excluding alternate domains in the Subject-Alternate-Name extension, it is recommended that you enable this option.

9 **TIP:** If you enable this option, use the Skip CFS Category-based Exclusion option (see [Excluding/Including Common Names](#)) to exclude a particular domain or domains from this global authenticate option. This is useful to override any server authentication-related failures of trusted sites.
6 Click the Edit icon for the zone to be configured. The Edit Zone dialog displays.

7 Select Enable SSL Server Inspection. This option is not selected by default.

8 Finish configuring the zone.

9 Click OK.

10 Repeat Step 6 through Step 8 for each zone on which to enable DPI-SSL server inspection

Selecting the Re-Signing Certificate Authority

The re-signing certificate replaces the original certificate signing authority only if that authority certificate is trusted by the firewall. If the authority is not trusted, then the certificate is self-signed. To avoid certificate errors, choose a certificate that is trusted by devices protected by DPI-SSL.

NOTE: For information about requesting/creating a DPI SSL Certificate Authority (CA) certificate, see the Knowledge Base article, How to request/create DPI-SSL Certificate Authority (CA) certificates for the purpose of DPI-SSL certificate resigning (SW14090).

To select a re-signing certificate

1 Navigate to the Security Configuration | Decryption Services > DPI-SSL/TLS Client page.

2 Click Certificate.

3 Select the certificate to use from the Certificate drop-down menu. By default, DPI-SSL uses the Default SonicWall DPI-SSL CA certificate to re-sign traffic that has been inspected.

NOTE: If the certificate you want is not listed, you can import it from the System Setup | Appliance > Certificates page. See SonicWall SonicOS 6.5 System Setup.

For PKCS-12-formatted certificates, see SonicWall SonicOS 6.5 System Setup.

4 To download the selected certificate to the firewall, click the (download) link. The Opening filename dialog appears.

TIP: To view available certificates, click on the (Manage Certificates) link to display the System > Certificates page

![Certificate re-signing Authority](image)
a. Ensure the **Save File** radio button is selected.
b. Click **OK**.
The file is downloaded.

5. Click **Accept**.

Adding Trust to the Browser

For a re-signing certificate authority to successfully re-sign certificates, browsers have to trust the certificate authority. Such trust can be established by having the re-signing certificate imported into the browser’s trusted CA list. Follow your browser’s instructions for importing re-signing certificates.

Configuring Exclusions and Inclusions

By default, when DPI-SSL is enabled, it applies to all traffic on the appliance. You can customize to which traffic DPI-SSL inspection applies:

- **Exclusion/Inclusion** lists exclude/include specified objects and groups
- **Common Name** exclusions excludes specified host names
- **CFS Category-based Exclusion/Inclusion** excludes or includes specified categories based on CFS categories

This customization allows individual exclusion/inclusion of alternate names for a domain that is part of a list of domains supported by the same server (certificate). In deployments that process a large amount of traffic, to reduce the CPU impact of DPI-SSL and to prevent the appliance from reaching the maximum number of concurrent DPI-SSL inspected connections, it can be useful to exclude trusted sources.

NOTE: If DPI-SSL is enabled on the firewall when using Google Drive, Apple iTunes, or any other application with pinned certificates, the application may fail to connect to the server. To allow the application to connect, exclude the associated domains from DPI-SSL; for example, to allow Google Drive to work, exclude:

- `.google.com`
- `.googleapis.com`
- `.gstatic.com`

As Google uses one certificate for all its applications, excluding these domains allows Google applications to bypass DPI-SSL.

Alternatively, exclude the client machines from DPI-SSL.

Topics:

- Excluding/Including Objects/Groups
- Excluding/Including by Common Name
- Specifying CFS Category-based Exclusions/Inclusions
- Content Filtering
- App Rules
Excluding/Including Objects/Groups

To customize DPI-SSL client inspection:

1. Click **Objects** of the Decryption Services > DPI-SSL/TLS Client page.

![Exclusion/Inclusion Table]

<table>
<thead>
<tr>
<th></th>
<th>Exclude</th>
<th>Include</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Object/Group</td>
<td>None</td>
<td>All</td>
</tr>
<tr>
<td>Service Object/Group</td>
<td>None</td>
<td>All</td>
</tr>
<tr>
<td>User Object/Group</td>
<td>None</td>
<td>All</td>
</tr>
</tbody>
</table>

2. From the **Address Object/Group Exclude** and **Include** drop-down menus, select an address object or group to exclude or include from DPI-SSL inspection. By default, **Exclude** is set to **None** and **Include** is set to **All**.

 TIP: The **Include** drop-down menu can be used to fine tune the specified exclusion list. For example, by selecting the Remote-office-California address object in the **Exclude** drop-down menu and the Remote-office-Oakland address object in the **Include** drop-down menu.

3. From the **Service Object/Group Exclude** and **Include** drop-down menus, select an address object or group to exclude or include from DPI-SSL inspection. By default, **Exclude** is set to **None** and **Include** is set to **All**.

4. From the **User Object/Group Exclude** and **Include** drop-down menus, select an address object or group to exclude or include from DPI-SSL inspection. By default, **Exclude** is set to **None** and **Include** is set to **All**.

5. Click **Accept**.

Excluding/Including by Common Name

You can add trusted domain names to the exclusion list. Adding trusted domains to the Built-in exclusion database reduces the CPU effect of DPI-SSL and prevents the appliance from reaching the maximum number of concurrent DPI-SSL inspected connections.

Topics:

- Excluding/Including Common Names
- Deleting Custom Common Names
- Showing Connection Failures
Excluding/Including Common Names

To exclude/include entities by common name:

1. Click Common Name.

2. You can control the display of the common names by selecting the following options:
 - **View Style** options:
 - All (default) – Displays all common names.
 - Built-in – Displays only non-custom common names.
 - Custom – Displays only common names you've added.
 - **Action** options:
 - All (default) – Displays both excluded and CFS Category-exclusion overrides.
 - Exclude – Displays only excluded common names.
 - Skip CFS Category-based Exclusion – Displays only custom common names that have the override CFS category-based exclusion option selected.

 NOTE: Use the Skip CFS Category-based Exclusion option to exclude a particular domain from the global inclusion options, _Always authenticate server for decrypted connections_ and _Always authenticate server before applying exclusion policy_.

3. By default, all Built-in common names are approved. You can reject the approval of a Built-in common name by:
a. Clicking on the **Reject** icon in the **Configure** column for the common name. A confirmation message displays.

![Confirmation Message](image1)

b. Click **OK**.

The **Reject** icon becomes an **Accept** icon, and **Approved** in the **Built-in** column become **Rejected**.

NOTE: Built-in common names cannot be modified or deleted, but you can reject or accept them.

To accept a rejected Built-in common name:

a. Click its **Accept** icon. A confirmation message displays.

![Confirmation Message](image2)

b. Click **OK**.

4. To add a custom common name, click the **Add** button below the **Common Name Exclusions/Inclusions** table. The **Add Common Names** dialog displays.

![Add Common Names](image3)
a. Add one or more common names in the field. Separate multiple entries with commas or newline characters.

b. Specify the type of Action:
 - Exclude (default)
 - Override CFS Category-based Exclusion
 - Skip authenticating the server to opt out of authenticating the server for this domain if doing so results in the connection being blocked. Enable this option only if the server is a trusted domain.

c. DPI-SSL dynamically determines if a connection should be intercepted (included) or excluded, based on policy or configuration. When DPI-SSL extracts the domain name for the connection, exclusion information is readily available for subsequent connections to the same server/domain.

To disable use of dynamic exclusion cache (both server IP and common-name based), select the Always authenticate server before applying exclusion policy checkbox. This option is not selected by default.

d. Click Accept.

The Common Name Exclusions/Inclusions table is updated, with Custom in the Built-in column. If the Always authenticate server before applying exclusion policy option has been selected an Information icon displays next to Custom in the Built-in column.

Mouse over the Information icon to see which custom attributes were selected. If a common name was added through the Connection Failure List, the Information icon indicates the type of failure:
 - Skip CFS category exclusion
 - Skip Server authentication
 - Failed to authenticate server
 - Failed Client handshake
 - Failed Server handshake

To delete the entry, click the Delete icon in the Configure column.

5. You can search for common names by specifying a filter.
 a. In the Filter field, enter a name by specifying the name in this syntax: name:mycommonname.
 b. Click the Filter button.

6. Click Accept.

Deleting Custom Common Names

To delete custom common names:

1. Do one of the following:
 - Clicking a custom common name’s Delete icon in the Configure column.
 - Selecting the name in the Exclusions, and then clicking the Delete button.
• Clicking the **Delete All** checkbox to delete all custom common names. A confirmation message displays. Click **OK**.

2 Click **Accept**.

Showing Connection Failures

SonicOS keeps a list of recent DPI-SSL client-related connection failures. This is a powerful feature that:

- Lists DPI-SSL failed connections.
- Allows you to audit the failed connections.
- Provide a mechanism to automatically exclude some failing domains.

The dialog displays the run-time connection failures. The connection failures could be any of the following reasons:

- Failure to handshake with the Client
- Failure to handshake with the Server
- Failed to validate the domain name in the Client Hello
- Failure to authenticate the server (the server certificate issuer is not trusted)

The failure list is only available at run-time. The number logged for each failure is limited to ensure a single failure type does not overrun the entire buffer.

To use the connection failure list:

1 Click the **Show Connection Failures** button. The **Connection Failure List** dialog displays.

![Connection Failure List](image)

Each entry in this lists displays the:

- **Client Address**
- **Server Address**
- **Common Name** – The common name of the failed connection’s domain. You can edit this entry inline before adding it to the automatic exclusion list.
- **Error Message** – Provides contextual information associated with the connection that enables you to make appropriate choices about excluding this connection.

2 To add an entry to the exclusion list:
 a Select the entry.
b Make any edits to the entry.
 c Click the Exclude button.

3 To delete an entry:
 a Select it.
 b Click the Clear button.

4 To delete all entries, click the Clear All button.

5 When you have finished, click the Close button.

Specifying CFS Category-based Exclusions/Inclusions

You can exclude/include entities by content filter categories.

To specify CFS category-based exclusions/inclusions:

1 Click CFS Category-based Exclusions/Inclusions.

![ContentPaneFilterExclusions](image)

The status of the list is shown at the top of the view.

2 Select whether you want to include or exclude the selected categories by clicking either the Exclude (default) or Include radio button. By default, all categories are unselected.

3 Select the categories to be included/excluded. To select all categories, click the Select all Categories checkbox.

4 Optionally, repeat Step 2 and Step 3 to create the opposite list.
5 Optionally, to exclude a connection if the content filter category information for a domain is not available to DPI-SSL, select the **Exclude connection if Content Filter Category is not available** checkbox. This option is not selected by default.

In most cases, category information for a HTTPS domain is available locally in the firewall cache. When the category information is not locally available, DPI-SSL obtains the category information from the cloud without blocking the client or server communication. In rare cases, the category information is not available for DPI-SSL to make a decision. By default, such sites are inspected in DPI-SSL.

6 Click **Accept**.

Client DPI-SSL Examples

Topics:
- Content Filtering
- App Rules

Content Filtering

To perform SonicWall Content Filtering on HTTPS and SSL-based traffic using DPI-SSL:

1 Navigate to the **Global Settings** section of the **Security Configuration | Security Services | Content Filter** page.

2 Select **Enable Content Filter Service**.

3 Clear the **Enable HTTPS Content Filtering** checkbox.

4 Ensure **SonicWall CFS** is selected for the **Content Filter Type** from the drop-down menu.

5 Click **Accept**.

6 Navigate to the **Decryption Services > DPI-SSL/TLS Client** page.
7 Click General.

8 Select the Enable SSL Inspection checkbox.

9 Select the Content Filter checkbox.

10 Click Accept.

11 For information about configuring the content filters, see Configuring Content Filtering Service.

12 Navigate to a blocked site using the HTTPS protocol to verify that it is properly blocked.

NOTE: For content filtering over DPI-SSL, the first time HTTPS access is blocked results in a blank page being displayed. If the page is refreshed, the user sees the firewall block page.
App Rules

To filter by application firewall rules, you need to enable them on both the Security Configuration | Decryption Services > DPI-SSL/TLS Client page and the Policies | Rules > Advanced Application Control page.

2. Click General.

3. Select the Enable SSL Client Inspection checkbox.
4. Select the Application Firewall checkbox.
5. Click Accept.
7. Select the Enable App Control.
8. Configure an HTTP Client policy to block Microsoft Internet Explorer browser with block page as an action for the policy. For how to configure an App Rule, see SonicWall SonicOS 6.5 Policies.
9. Click Accept.
10. Access any website using the HTTPS protocol with Internet Explorer to verify it is blocked.
Configuring Server DPI-SSL Settings

- DPI-SSL > Server SSL
- Configuring DPI-SSL Server Settings

DPI-SSL > Server SSL

<table>
<thead>
<tr>
<th>General Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL Server Inspection:</td>
</tr>
<tr>
<td>Intrusion Prevention:</td>
</tr>
<tr>
<td>Gateway Anti-Virus:</td>
</tr>
<tr>
<td>Gateway Anti-Spyware:</td>
</tr>
<tr>
<td>Application Firewall:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusion/Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Object/Group: None</td>
</tr>
<tr>
<td>User Object/Group: None</td>
</tr>
<tr>
<td>Exclude:</td>
</tr>
<tr>
<td>Include:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSL Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Object</td>
</tr>
<tr>
<td>Add</td>
</tr>
</tbody>
</table>

NOTE: For information about DPI SSL, see About DPI-SSL on page 290.

The Server DPI-SSL deployment scenario is typically used to inspect HTTPS traffic when remote clients connect over the WAN to access content located on the firewall’s LAN. Server DPI-SSL allows you to configure pairings of an address object and certificate. When the appliance detects SSL connections to the address object, it presents the paired certificate and negotiates SSL with the connecting client.

Afterward, if the pairing defines the server to be cleartext, then a standard TCP connection is made to the server on the original (post NAT remapping) port. If the pairing is not defined to be cleartext, then an SSL connection to the server is negotiated. This allows for end-to-end encryption of the connection.

NOTE: In this deployment scenario, the owner of the firewall owns the certificates and private keys of the origin content servers. You would have to import the server’s original certificate onto the appliance and create an appropriate server IP address to server certificate mappings in the Server DPI-SSL UI.

Topics:
- Configuring DPI-SSL Server Settings
Configuring DPI-SSL Server Settings

Topics:
- Configuring General Server DPI-SSL Settings
- Configuring Exclusions and Inclusions
- Configuring Server-to-Certificate Pairings

Configuring General Server DPI-SSL Settings

To enable Server DPI-SSL inspection:

2. Select the Enable SSL Server Inspection checkbox.

3. Select the services with which to perform inspection:
 - Intrusion Prevent
 - Gateway Anti-Virus
 - Gateway Anti-Spyware
 - Application Firewall

4. Click Accept.

5. Scroll down to the SSL Servers section to configure the server or servers to which DPI-SSL inspection is applied. See Configuring Server-to-Certificate Pairings.

Configuring Exclusions and Inclusions

By default, the DPI-SSL applies to all traffic on the appliance when it is enabled. You can configure inclusion/exclusion lists to customize to which traffic DPI-SSL inspection applies. The Inclusion/Exclusion lists provide the ability to specify certain objects or groups. In deployments that process a large amount of traffic, to reduce the CPU impact of DPI-SSL and to prevent the appliance from reaching the maximum number of concurrent DPI-SSL inspected connections, it can be useful to exclude trusted sources.

To customize DPI-SSL server inspection:

1. Navigate to the Inclusion/Exclusion section of the Decryption Services > DPI-SSL/TLS Client page.
2 From the **Address Object/Group Exclude** and **Include** drop-down menus, select an address object or group to exclude or include from DPI-SSL inspection. By default, **Exclude** is set to **None** and **Include** is set to **All**.

TIP: The **Include** drop-down menu can be used to fine tune the specified exclusion list. For example, by selecting the **Remote-office-California** address object in the **Exclude** drop-down menu and the **Remote-office-Oakland** address object in the **Include** drop-down menu.

3 From the **User Object/Group Exclude** and **Include** drop-down menus, select an address object or group to exclude or include from DPI-SSL inspection. By default, **Exclude** is set to **None** and **Include** is set to **All**.

4 Click **Accept**.

Configuring Server-to-Certificate Pairings

Server DPI-SSL inspection requires that you specify which certificate is used to sign traffic for each server that has DPI-SSL inspection performed on its traffic.

To configure a server-to-certificate pairing:

1 Navigate to the **SSL Servers** section of the **Decryption Services > DPI-SSL/TLS Client** page.

<table>
<thead>
<tr>
<th>SSL Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td># Address Object</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>ADD</td>
</tr>
</tbody>
</table>

2 Click the **Add** button. The **SSL Server Setting** dialog displays.

3 In the **Address Object/Group** drop-down menu, select the address object or group for the server or servers to which you want to apply DPI-SSL inspection.

4 In the **SSL Certificate** drop-down menu, select the certificate to be used to sign the traffic for the server. For more information on:
 - Importing a new certificate to the appliance, see **Selecting the Re-Signing Certificate Authority**.
 - Creating a Linux certificate, see **SonicWall SonicOS 6.5 System Setup**.

5 Select the **Cleartext** checkbox to enable SSL offloading. When adding server-to-certificate pairs, a **cleartext** option is available. This option provides a method of sending unencrypted data onto a server. By default, this option is not selected.

 IMPORTANT: For such a configuration to work properly, a NAT policy needs to be created for this server on the **Policies | Rules > NAT Policies** page to map traffic destined for the offload server from an SSL port to a non-SSL port. Traffic must be sent over a port other than 443. For example, for HTTPS traffic used with SSL offloading, an inbound NAT policy remapping traffic from port 443 to port 80 needs to be created for things to work properly.

6 Click **Add**.
• Configuring DPI-SSH
DPI-SSH provides deep packet inspection of encrypted information.

NOTE: Gateway Anti-Spyware service doesn’t work for DPI-SSH because TCP streams for Anti-Spyware are not supported. If the checkbox is checked, the system takes no action.

Topics:
- About DPI-SSH
- Supported Clients/Servers and Connections
- Supported Key Exchange Algorithms
- Activating Your DPI-SSH License
- Configuring DPI-SSH

About DPI-SSH

Deep Packet Inspection (DPI) technology allows a packet filtering-firewall to classify passing traffic based on signatures of the Layer 3 and Layer 4 contents of the packet. DPI also provides information that describes the
contents of the packet’s payload (the Layer 7 application data). DPI is an existing SonicOS feature that examines
the data and the header of a packet as it passes through the SonicWall firewall, searching for protocol
non-compliance, viruses, spam, intrusions, or defined criteria to decide whether the packet may pass or if it
needs to be routed to a different destination for action or other tracking.

SSH (Secure Shell) is a cryptographic network protocol for secure data communication, remote command-line
login, remote command execution, and other secure network services between two networked computers. SSH
connects, via a secure channel over an insecure network—a server and a client running SSH server and SSH
client programs, respectively. The protocol distinguishes between two different versions, referred to as SSH-1
and SSH-2. SonicWall only supports SSH-2; SSH-1 sessions are not intercepted and inspected.

| NOTE: | SSH clients with different version numbers cannot be used at the same time.f |

To effectively inspect an encrypted message, such as SSH, the payload must be decrypted first. DPI-SSH works as
a man-in-the-middle (MITM) or a packet proxy. Any preset end-to-end communication is broken, and pre-shared
keys cannot be used.

DPI-SSH divides the one SSH tunnel into two tunnels as it decrypts the packets coming from both tunnels and
performs the inspection. If the packet passes the DPI check, DPI-SSH sends the re-encrypted packet to the
tunnels. If the packet fails the check, it’s routed to another destination, based on the policies, or submitted for
collecting statistical information, and DPI-SSH resets the connection.

Supported Clients/Servers and Connections

SSH is not a shell, but a secure channel that provides different services over this channel (tunnel), including
shell, file transfer, or X11 forwarding.

DPI-SSH supports both route mode and Wire Mode. For Wire Mode, DPI-SSH is only supported in the secure
(active DPI of inline traffic) mode. For route mode, there is no limitation.

SSH supports different client and server implementations, as listed in Supported clients/servers.

Supported clients/servers

<table>
<thead>
<tr>
<th>DPI-SSH Client Supported</th>
<th>DPI-SSH Servers Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH client for Cygwin</td>
<td>SSH server on Fedora</td>
</tr>
<tr>
<td>Putty</td>
<td>SSH server on Ubuntu</td>
</tr>
<tr>
<td>secureCRT</td>
<td></td>
</tr>
<tr>
<td>SSH on Ubuntu</td>
<td></td>
</tr>
<tr>
<td>SSH on centos</td>
<td></td>
</tr>
<tr>
<td>SFTP client on Cygwin</td>
<td></td>
</tr>
<tr>
<td>SCP on Cygwin</td>
<td></td>
</tr>
<tr>
<td>Winscp</td>
<td></td>
</tr>
</tbody>
</table>

DPI-SSH supports up to 250 connections.

Supported Key Exchange Algorithms

DPI-SSH supports these key exchange algorithms:

- Diffie-Hellman-group1-sha1
DPI-SSH supports DSA keys on the client side and RSA keys on the server side.

Caveats

If there is already an SSH server key stored in the local machine, it must be deleted. For example, if you already SSH to a server, and the server DSS key is saved, the SSH session fails if the DSS key is not deleted from the local file.

The `ssh-keygen` utility cannot be used to bypass the password.

Putty uses GSSAPI. This option is for SSH2 only, which provides stronger encrypted authentication. It stores a local token or secret in the local client and server for the first time communication. It exchanges messages and operations before DPI-SSH starts, however, so DPI-SSH has no knowledge about what was exchanged before, including the GSSAPI token. DPI-SSH fails with the GSSAPI option enabled.

On the client side, either the SSH 2.x or 1.x client can be used if DPI-SSH is enabled. Clients with different version numbers, however, cannot be used at the same time.

Gateway Anti-Spyware and Application Firewall inspections are not supported even if these options are selected in the Decryption Services > DPI-SSH page.

Activating Your DPI-SSH License

DPI-SSH is fully licensed by default, but you need to activate your license. When you first select Decryption Services > DPI-SSH, you receive the message: Upgrade Required.

If the upgrade isn’t required, skip to Configuring DPI-SSH.
To activate your license:

1. Click on the link to Activate your SonicWall DPH SSH License. The Licenses > License Management page displays.

2. Log into MySonicWall using your credentials. The License > License Management page displays all services and indicates which ones are licensed.

4. Click Enable.

5. Select Continue. The status for Deep Packet Inspection for SSH (DPI-SSH) now shows Licensed.
Configuring DPI-SSH

Topics:
- Configuring Client DPI-SSH Inspection
- Customizing Client DPI-SSH Inspection

Configuring Client DPI-SSH Inspection

You configure Client DPI-SSH inspection in the General Settings section of Decryption Services > DPI-SSH page.

To enable Client DPI-SSH inspection:
1. In the General Settings section, select the Enable SSH Inspection checkbox. This option is not selected by default.
2. Select one or more types of service inspections; none are selected by default:
• Intrusion Prevention
• Gateway Anti-Virus
• Gateway Anti-Spyware

NOTE: Gateway Anti-Spyware service doesn’t work for DPI-SSH because TCP streams for Anti-Spyware are not supported. If the checkbox is checked the system takes no action.

• Application Firewall
• Block Port Forwarding
 • Local Port Forwarding
 • Remote Port Forwarding
 • X11 Forwarding

3 Click Accept.

DPI-SSH Blocking of Port Forwarding

SSH makes it possible to tunnel other applications through SSH by using port forwarding. Port forwarding allows local or remote computers (for example, computers on the internet) to connect to a specific computer or service within a private LAN. Port forwarding translates the address and/or port number of a packet to a new destination address and forwards it to that destination according to the routing rules. Since these packets have new destination and port numbers, they can bypass the firewall security policies.

To prevent circumvention of the application-based security policies on the SonicWall network security appliance, SonicOS supports blocking SSH port forwarding for both Local and Remote port forwarding.

• Local port forwarding allows a computer on the local network to connect to another server, which might be an external server.
• Dynamic port forwarding allows you to configure one local port for tunneling data to all remote destinations. This can be considered as a special case of Local port forwarding.
• Remote port forwarding allows a remote host to connect to an internal server.

SSH port forwarding supports the following servers:
• SSH server on Fedora
• SSH server on Ubuntu

SSH port forwarding supports both:
• Route mode
• Wire mode – only supported in Secure Mode

SSH port forwarding supports a maximum of 1000 connections, matching the maximum supported by DPI-SSH.

DPI-SSH must be enabled for blocking of SSH port forwarding to work. If any local or remote port forwarding requests are made when the blocking feature is enabled, SonicOS blocks those requests and resets the connection.
To enable blocking of SSH port forwarding:

1. Navigate to the MANAGE | Security Configuration | Decryption Services > DPI-SSH page.
2. In the General Settings section, select Block Port Forwarding.
3. Select either or both Local Port Forwarding and Remote Port Forwarding to block that type of port forwarding.
4. Click Accept.

DPI-SSH port forwarding supports the following clients:
- SSH client for Cygwin
- Putty
- SecureCRT
- SSH on Ubuntu
- SSH on CentOS

Customizing Client DPI-SSH Inspection

By default, when DPI-SSH is enabled, it applies to all traffic on the firewall. You can customize to which traffic DPI-SSH inspection applies in the Inclusion/Exclusion section.

To customize DPI-SSH client inspection:

1. Go to the Inclusion/Exclusion section of the Decryption Services > DPI-SSH page.
2. From the Address Object/Group Exclude and Include drop-down menus, select an address object or group to exclude or include from DPI-SSH inspection. By default, Exclude is set to None and Include is set to All.
3. From the Service Object/Group Exclude and Include drop-down menus, select an address object or group to exclude or include from DPI-SSH inspection. By default, Exclude is set to None and Include is set to All.
4. From the User Object/Group Exclude and Include drop-down menus, select an address object or group to exclude or include from DPI-SSH inspection. By default, Exclude is set to None and Include is set to All.
5. Click Accept.
SonicWall Support

- SonicWall Support
Technical support is available to customers who have purchased SonicWall products with a valid maintenance contract and to customers who have trial versions.

The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours a day, 365 days a year. To access the Support Portal, go to https://www.sonicwall.com/support.

The Support Portal enables you to:

- View knowledge base articles and technical documentation
- View video tutorials
- Access MySonicWall
- Learn about SonicWall professional services
- Review SonicWall Support services and warranty information
- Register for training and certification
- Request technical support or customer service

To contact SonicWall Support, visit https://www.sonicwall.com/support/contact-support.